

## การปรับปรุงเครื่องมือค้นหาเว็บไซต์โดยใช้เว็บเชิงความหมาย กรณีศึกษาเว็บสารสนเทศการท่องเที่ยว อำเภอหัวหิน

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีสารสนเทศ

ภาควิชาคอมพิวเตอร์
บัณฑิตวิทยาลัย มหาวิทยาลัยศิลปากร
ปีการศึกษา 2553
ลิขสิทธิ์ของบัณฑิตวิทยาลัย มหาวิทยาลัยศิลปากร

# การปรับปรุงเครื่องมือค้นหาเว็บไซต์โดยใช้เว็บเชิงความหมาย กรณีศึกษาเว็บสารสนเทศการท่องเที่ยว 

 อำเภอหัวหิน
## โดย <br> นางสาวชิดชนก โชคสุชาติ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีสารสนเทศ

ภาควิชาคอมพิวเตอร์
บัณฑิตวิทยาลัย มหาวิทยาลัยศิลปากร
ปีการศึกษา 2553
ลิขสิทธิ่ของบัณฑิตวิทยาลัย มหาวิทยาลัยศิลปากร

By
Chidchanok Choksuchat

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree
MASTER OF SCIENCE
Department of Computing
Graduate School

## SILPAKORN UNIVERSITY

บัณฑิตวิทยาลัย มหาวิทยาลัยศิลปากร อนุมัติให้วิทยานิพนธ์เรื่อง " การปรับปรุง เครื่องมือค้นหาเว็บไซต์โดยใช้เว็บเชิงความหมาย กรณีศึกษาเว็บสารสนเทศการท่องเที่ยวอำเภอหัวหิน " เสนอโดย นางสาวชิดชนก โชคสุชาติ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญูญา วิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีสารสนเทศ

$$
\begin{gathered}
\text { (ผู้ช่วยศาสตราจารย์ ดร.ปานใจ ธารทัศนวงศ์) } \\
\text { คณบดีบัณฑิตวิทยาลัย } \\
\text { วันที่..........ดือน.................... พ.ศ........... }
\end{gathered}
$$

อาจารย์ที่ปรึกษาวิทยานิพนธ์ รองศาสตราจารย์ ดร.จันทนา จันทราพรชัย

$\qquad$ ประธานกรรมการ
(อาจารย์ ดร.ทัศนวรรณ ศูนย์กลาง)
$\qquad$ ./. $\qquad$
$\qquad$
$\qquad$ กรรมการ
(ผู้ช่วยศาสตราจารย์ ดร.รัชฎา คงคะจันทร์)
$\qquad$ ../. $\qquad$ .../. $\qquad$
$\qquad$ กรรมการ
(รองศาสตราจารย์ ดร.จันทนา จันทราพรชัย)
$\qquad$
$\qquad$ ../.

49309348 : สาขาวิชาเทคโนโลยีสารสนเทศ
คำสำคัญ : เว็บเชิงความหมาย/ ออนโท โลยี
ชิดชนก โชคสุชาติ : การปรับปรุงเครื่องมือค้นหาเว็บไซต์โดยใช้เว็บเชิงความหมาย กรณีศึกษาเว็บสารสนเทศการท่องเที่ยวอำเภอหัวหิน. อาจารย์ที่ปรึกษาวิทยานิพนธ์ : รศ.ดร. จันทนา จันทราพรชัย. 247 หน้า.

ปัจจุบันการท่องเที่ยวในอำเภอหัวหินได้รับความนิยมมาก มีการใช้งานเทคโนโลยี สารสนเทศเพื่อการท่องเที่ยวกว่าร้อยละ 50 ของข้อมูลการบริการ ปัญหาคือมีการเก็บข่าวสารหลาย รูปแบบกระจายกันอยู่บนอินเตอร์เน็ต ทำให้ผลลัพธ์ที่ค้นหาจากเว็บไซต์มีมาก การแปลและ ประมวลผลต้องใช้เวลาเพราะมนุษย์เท่านั้นที่เข้าใจความหมาย จึงถือว่าใช้ความสามารถของ คอมพิวเตอร์ได้ไม่คุ้มค่า ในงานวิจัยนี้ผู้วิจัยนำเสนอการปรับปรุงการค้นหาเว็บไซต์ด้วยหลักการ เว็บเชิงความหมายในขอบเขตเฉพาะของสารสนเทศการท่องเที่ยวของอำเภอหัวหิน เพื่อให้เห็น ความชัดเจนในการแก้ไขปัญหาแต่ละด้านได้มากยิ่งขึ้น

ในงานวิจัยนี้แหล่งข้อมูลมาจากข้อมูลเว็บสารสนเทศด้านการท่องเที่ยวจากเทศบาล เมืองและเว็บไซต์ที่พัณแรมของเอกชนมากกว่า 200 เพจ จากนั้นออกแบบออนโทโลยีโดยอ้างอิง ฐานข้อมูลเชิงสัมพันธ์เดิมที่ผ่านการนอร์มัลไลซ์แล้วาจากนั้นจึงวัดประสิทธิภาพเปรียบเทียบ ระหว่างออนโทโลยีกับฐานข้อมูลเว็บเดิม โดยใช้ทฤษฎีบทของวาร์ดีและคาลวาเนสซึ่งเกี่ยวกับการ วัดความซับซ้อนและดีกรีความซับซ้อนของคิวรี สรุปได้ว่าสำหรับรูปแบบฐานข้อมูลเชิงสัมพันธ์ใน ขอบเขตที่ศึกษา มีค่าความซับซ้อนคิวรีขึ้นอยู่กับความซับซ้อนของข้อมูลและตัวแปรการเชื่อมต่อ ถ้าค่าความซับซ้อนคิวรีมาก ดีกรีความซับซ้อนคิวรีจะสูง แต่สำหรับออนโทโลยีนั้นค่าความ ซับซ้อนน้อย และลดดีกรีความซับซ้อนได้ถึง 60 ถึง 90 เปอร์เซ็นต์ จากนั้นเพิ่มความซับซ้อนของ ออนโท โลยีให้มากขึ้นแล้วแสดงการค้นหาเพื่อหาคำตอบของคิวรี โดยทดสอบตามเงื่อนไขของ OWL DL ที่กำหนดไว้จากนั้นนำไปวัดความพึงพอใจของผู้ใช้ที่มีต่อการใช้งานการค้นหาเว็บ สารสนเทศโดยหลักการของเว็บเชิงความหมายแล้วสรุปว่าในด้านเนื้อหา มีความพึงพอใจระดับมาก (3.76) ด้านการออกแบบมีความพึงพอใจระดับมาก (3.68) ด้านการจัดรูปแบบของเว็บไซต์มีความ พึงพอใจระดับมาก (3.70) และด้านประโยชน์และการนำไปใช้ ความพึงพอใจระดับมาก (3.99)

ภาควิชาคอมพิวเตอร์ บัณฑิตวิทยาลัย มหาวิทยาลัยศิลปากร ปีการศึกษา 2553
ลายมือชื่อนักศึกษา. $\qquad$
ลายมือชื่ออาจารย์ที่ปรึกษาวิทยานิพนธ์ $\qquad$

49309348 : MAJOR : INFORMATION TECHNOLOGY
KEY WORD : SEMANTIC WEB/ ONTOLOGY
CHIDCHANOK CHOKSUCHAT: IMPROVING SEARCH ENGINE USING SEMANTIC WEB : CASE STUDY ON HUA - HIN TOURISM INFORMATION. THESIS ADVISOR: ASSOC. PROF. CHANTANA CHANTRAPORNCHAI, Ph.D. 247 pp.

Nowadays, Hua-Hin is a popular and cosmopolitan tourist destination. There are using the tourism information technology more than 50 percent of all internet services. The problems are the data collected in varied formats on the distributed database. Consequently, the tourists are difficult to collect the information before travelling. Whereas the results of the search engines that use keywords search, return many webpage documents. Only the human users can understand all the results. Then it takes so many times when the user do search, integrate and understand the answers. So, the user cannot use covering the full capability of computers. In this research, the researcher offers the improving search engine using semantic web case study on Hua-Hin tourism information.

Firstly, designed the ontology based on the database of HuaHin municipality website. The data integrated with accommodation website over 200 pages. After that, measured between normalized relational database and web ontology language; OWL using query complexity concept of Verdi and degree of query complexity concept of Calvenese. As a result, concluded that if there was more data size and joined variables, the query complexity of RDB will increase but the ontology will reduce one. In the percentage of reducing the degree of query complexity were more than 60 percent. Therefore, the precision value of ontology searching was better than RDB searching. After that, improved the ontology in $S \mathcal{H} O I \mathcal{N}(D)$ and tested by Pellet 2.2.2 as they cover OWL DL. Finally, measure the web application through the user satisfaction survey. The result of content satisfaction is good in 3.76, the design satisfaction is good in 3.68, the website layout is good in 3.70 and the advantage usability is good in 3.99 .
$\qquad$

## กิตติกรรมประกาศ

วิทยานิพนธ์นี้สำเร็จลงด้วยความกรุณาเป็นอย่างสูงของรองศาสตราจารย์ ดร.จันทนา จันทราพร ชัย อาจารย์ที่ปรึกษาวิทยานิพนธ์ของข้าพเจ้า ที่กรุณาให้โอกาสและความรู้ทั้งหลาย มากกว่าด้านการเรียน อาจารย์ให้คำปรึกษาที่นำมาประยุกต์ใช้ได้ในชีวิตจริง ให้กำลังใจและ แก้ปัญหาให้ข้าพเจ้ามาโดยตลอด สิ่งต่างๆ ที่ข้าพเจ้าทำผิดพลาดไป ข้าพเจ้ากราบขออภัยและกราบ ขอบพระคุณอาจารย์เป็นอย่างสูงไว้ ณ ที่นี้ด้วย

ขอขอบพระคุณ ผู้ช่วยศาสตรจารย์ ดร. รัชฎา คงคะจันทร์ ผู้ทรงคุณวุฒิ และ อาจารย์ ดร.ทัศนวรรณ ศูนย์กลาง ประธานกรรมการสอบที่ช่วยแนะนำแนวทางการทำวิทยานิพนธ์ให้มี ความถูกต้องและสมบูรณ์มากขึ้น

ขอขอบพระคุณ ผู้ช่วยศาสตราจารย์สุจิตรา อดุลย์เกษม ผู้ช่วยศาสตราจารย์ ดร.ปานใจ ธารทัศนวงศ์ อาจารย์ ดร.สุนีย์ พงษ์พินิจภิญโญและคณาจารย์ประจำหลักสูตรวิทยาศาสตร มหาบัณฑิต สาขาวิชาเทคโนโลยีสารสนเทศ ภาควิชาคอมพิวเตอร์ มหาวิทยาลัยศิลปากรทุกท่านที่ กรุณาประสิทธิ์ประสาทความรู้และประสบการณ์อันมีค่ายิ่งแก่ศิษย์
 น้องทุกๆ ท่านที่คอยเป็นกำลังใจให้เสมอมา

ขอขอบพระคุณอาจาร ย์ทุกท่านที่พบในงานประชุมวิชาการนานาชาติ ท่านกรุณาให้ คำแนะนำเพื่อนำมาปรับปรุงวิทยานิพนธ์ให้ถูกต้องมากขึ้นระหว่างการทำวิจัย

ขอขอบพระคุณคุณจิระ พงษ์ไพบูลย์ นายกเทศมนตรีเมืองหัวหิน เจ้าหน้าที่เทศบาล คุณ โสรัจจ์ ธาราสุข ที่ช่วยเอื้อเฟื้อสำเนาฐานข้อมูลเว็บไซต์เทศบาล คุณผกา เตชะปัญญา คุณณัฐพงษ์ สิงห์กิวิรัตน์ และคุณทิพวรรณ บุญนิมิต ช่วยเอื้อเฟื้อข้อมูลด้านการท่องเที่ยวอำเภอหัวหิน

ขอขอบคุณพี่ประวิม เหลืองสมานกุล ที่ให้คำแนะนำและช่วยเหลือในการประสานงาน ต่างๆ ตลอดการทำวิทยานิพนธ์นี้

ขอขอบคุณพี่และเพื่อนๆ นักศึกษาหลักสูตรวิทยาศาสตรมหาบัณฑิต สาขาเทคโนโลยี สารสนเทศ ทุกท่านที่คอยเป็นกำลังใจและช่วยเหลือข้าพเจ้าในการทำวิจัยครั้งนี้

## สารบัญ

หน้า
บทคัดย่อภาษาไทย ..... ง
บทคัดย่อภาษาอังกฤษ ..... จ
กิตติกรรมประกาศ ..... ฉ
สารบัญตาราง ..... §
สารบัญภาพ ..... ฒ
บทที่
1 บทนำ ..... 1
ความเป็นมาและความสำคัญของปัญหา ..... 1
วัตถุประสงค์การวิจัย ..... 1
สมมติฐานการวิจัย ..... 2
ประโยชน์ที่คาดว่าจะได้รับ ..... 2
ขั้นตอนการวิจัย ..... 2
ขกคาวิก ขอบเขตการวิจัย
เครื่องมือที่ใช้ในการวิจัย ..... 2
คำนิยามศัพท์เฉพาะ ..... 4
2 เอกสารและงานวิจัยที่เกี่ยวข้อง ..... 5
ที่มาของเว็บเชิงความหมาย ..... 5
ความแตกต่างระหว่างเว็บปัจจุบันและเว็บเชิงความหมาย ..... 5
การเปรียบเทียบระหว่างภาษาเชิงวัตถุและภาษา RDF/OWL ..... 6
มุมมองของเว็บเชิงความหมาย ..... 8
ระดับขั้นของการสื่อความหมาย ..... 9
สถาปัตยกรรมทางตรรกะ ..... 10
สถาปัตยกรรมของแอพพลิเคชันเชิงความหมาย ..... 12
แนวคิดและทฤษฎีที่เกี่ยวข้อง ..... 13
ความหมายของเครื่องมือค้นหาเว็บไซต์ (Search Engine) ..... 13
ข้อจำกัดของเครื่องมือค้นหาเว็บไซต์ (Search Engine) ในเว็บแบบดั้งเดิม ..... 13
การค้นหาข้อมูลด้วยเทคโนโลยีเว็บเชิงความหมาย ..... 15
บทที่ ..... หน้า
ประเภทของ Semantic Web Search Engines ..... 15
ตัวอย่างงานวิอัเเกี่ยวกับเว็บเชิงความหมาย ..... 17
Swoogle ..... 17
Harmonise ..... 18
ออนโทโลยี ..... 19
ขั้นตอนการพัฒนาออนโท โลยี ..... 21
เครื่องมือที่ใช้พัฒนาออนโทโลยี ..... 22
การท่องเที่ยว ..... 25
องค์ประกอบของอุตสาหกรรมการท่องเที่ยว ..... 25
เทคโนโลยีสารสนเทศและการท่องเที่ยว ..... 26
ข้อจำกัดเทคโนโลยีสารสนเทศการท่องเที่ยว ..... 27
ตัวอย่างเทคโนโลยีสารสนเทศการท่องเที่ยวอำเภอหัวหินในปัจจุบัน ..... 27
ขกคาวินยา สาเหตุที่วิอัยเว็บการท่องเที่ยวอำเภอหัวหิน ..... 27
ประเภทของสินค้าการท่องเที่ยว ..... 28
แหล่งที่มาของข้อมูลสถิติการท่องเที่ยว ..... 29
ทฤษฎีและการวัดค่า ..... 30
คิวรีที่เชื่อมต่อกัน ..... 30
รูปแบบการประเมินผลคิวรี. ..... 31
การวัดค่าความซับซ้อนของคิวรี ..... 31
การเพิ่มกฎของ OWL-DL และการปรับออนโทโลยีของการท่องเที่ยวใน อำเภอหัวหิน ให้มีความซับซ้อนมากขึ้น ..... 34
วิธีการที่ใช้ในการค้นหา ..... 35
เครื่องมือวัดประสิทธิภาพของความซับซ้อนของคิวรีระหว่างฐานข้อมูล เชิงสัมพันธ์และฐานความรู้ ..... 37
3 วิธีดำเนินการวิจัย ..... 38
การวิเคราะห์ความต้องการของระบบ ..... 38
การออกแบบและวิเคราะห์ระบบงาน ..... 39
บทที่ ..... หน้า
สถาปัตยกรรมระบบงาน ..... 39
Data Flow Diagram ..... 40
ER Diagram ..... 45
ออนโทโลยีของการท่องเที่ยวของอำเภอหัวหินที่นำมาเปรียบเทียบค่าความ ซับซ้อนของข้อมูล ..... 46
การทดลองและประเมินผล ..... 52
การปรับออนโทโลยีของการท่องเที่ยวในอำเภอหัวหินให้มีความซับซ้อนมากขึ้น เพื่อการรียูสและใช้งานร่วมกันระหว่างออนโทโลยี ..... 59
เปรียบเทียบค่า OWL DL Expressivity ..... 60
เงื่อนไขทั้งหมดที่ใช้ในออนโทโลยี OWL-DL ..... 61
การเขียนโปรแกรมเพื่อการจัดการข้อมูลเมตาดาตา ..... 64
การเขียนโปรแกรมเพื่อค้นหาข้อมูล ..... 67
การค้นหาข้อมูลจากผู้ใช้งานและการตรวจสอบคิวรีตามเงื่อนไขที่ตั้งไว้ ..... 69
ขากาวิกตระ ตรเลอกกลุมตวอยาง ..... 71
เครื่องมือและวิธีการในการสุ่มตัวอย่าง ..... 71
ความถูกต้องและความน่าเชื่อถือของเครื่องมือในการเก็บข้อมูล ..... 72
การสร้างเครื่องมือในการเก็บข้อมูล ..... 72
วิธีการรวบรวมข้อมูล ..... 72
วิธีการวิเคราะห์ข้อมูล ..... 73
4 ผลการวิเคราะห์ข้อมูล ..... 74
ผลการทดสอบประสิทธิภาพของคิวรี ..... 74
ผลการวิเคราะห์ข้อมูลจากการตรวจสอบการค้นหาตาม OWL DL ..... 76
ผลการทดสอบการใช้งานโปรแกรม โดยกลุ่มตัวอย่าง ..... 77
5 อภิปรายผลของการวิจัย ..... 86
อภิปรายการวัดค่าความซับซ้อนของคิวรี ..... 86
อภิปรายผลการทดสอบทั้งสองเครื่อง ..... 92
อภิปรายผลการวิเคราะห์ข้อมูลจากการตรวจสอบการค้นหาตาม OWL DL ..... 94
บทที่ ..... หน้า
อภิปรายผลการทดสอบการใช้งานโปรแกรม โดยกลุ่มตัวอย่าง ..... 96
6 สรุปผลและข้อเสนอแนะ ..... 97
สรุปผลการศึกษาเรื่องการลดความซับซ้อนของข้อมูล. ..... 97
สรุปผลการศึกษาเรื่องการใช้ OWL DL ..... 97
สรุปผลการทดสอบการใช้งานโปรแกรม โดยกลุ่มตัวอย่าง ..... 99
ข้อเสนอแนะ ..... 99
บรรณานุกรม ..... 101
ภาคผนวก ..... 105
ภาคผนวก ก คิวรีที่ใช้ในโปรแกรม ..... 106
ภาคผนวก ข การติดตั้งโปรแกรมที่เกี่ยวข้องกับการเขียนโปรแกรมเว็บเชิง ..... 118
ขไหาวิน ภาคคนวกคแหล่งข้อมูลที่ใช้ในงานวิจัย ..... 147
ภาคผนวก่ง ภาษาเชิงความหมาย ..... 159
ภาคผนวก จ การใช้งานโปรแกรมสร้างออนโทโลยี ..... 189
ภาคผนวก ฉ ชั้นของคลาสออนโท โลยี กรณีศึกษา การท่องเที่ยวอำเภอหัวหิน ..... 213
ภาคผนวก ช รูปแบบภาษาคิวรี SPARQL ..... 238
ภาคผนวก ซ ผลการทดสอบความเชื่อมั่นแบบสอบถาม ..... 241
ประวัติผู้วิจัย ..... 247

## สารบัญตาราง

ตารางที่หน้า
1 สรุปความแตกต่างระหว่างเว็บดั้งเดิมและเว็บเชิงความหมาย ..... 6
2 แสดงการเปรียบเทียบระหว่างภาษาเว็บเชิงความหมายและภาษาเชิงวัตถุ ..... 6
3 ..... 8
4 ..... 16
สรุปประเภทของ Semantic Web Search Engines และชื่อแอพพลิเคชัน .....
20 .....
20
ความแตกต่างระหว่าง Relational database, XML, RDF, OWL
ความแตกต่างระหว่าง Relational database, XML, RDF, OWL21
8 รูปแบบการประเมินผลคิวรี ..... 33
ออนโทโลยีเกี่ยวกับการท่องเที่ยวที่ศึกษาและปรับปรุงหลังการวัดประสิทธิภาพ ..... 34
แสดงรายละเอียดการทำงานของเครื่องมือในระบบ ..... 45 ..... 10
11 คลาส คลาสย่อย และรายละเอียดของคลาส ..... 47
WMOD 12คุณสมบัติของวัตถุ48
คุณสมบัตของประเภทข้อมูล
การเปรียบเทียบมุมมองระหว่างฐานข้อมูลและฐานความรู้ของเว็บเชิงความ- หมาย20
14 การเลือกคิวรีมาทดสอบโดยพิจารณาตามขนาดข้อมูล โดเมนและ ความลึก ..... 52
15 การเปรียบเทียบค่าจำนวนคลาส คุณสมบัติและOWL DL Expressivity ..... 60
16 รีสตริกชันที่ใช้ในออนโทโลยีการท่องเที่ยวที่ผ่านการปรับปรุงแล้ว ..... 62
เว็บไซต์ส่วนหนึ่งที่ใช้ค้นหาข้อมูลมาใส่ออนโทโลยี ..... 66
ผลการทดสอบประสิทธิภาพการค้นหาระหว่างฐานข้อมูลเชิงสัมพันธ์และออน- โทโลยี ..... 74
การเปรียบเทียบการค้นหาตาม OWL DL ..... 76
จำนวนและร้อยละของกลุ่มตัวอย่างจำแนกตามเพศ ..... 77 ..... 20
21 จำนวนและร้อยละของกลุ่มตัวอย่างจำแนกตามอายุ ..... 77
22 จำนวนและร้อยละของกลุ่มตัวอย่างจำแนกตามระดับการศึกษา ..... 78
จำนวนและร้อยละของกลุ่มตัวอย่างจำแนกตามอาชีพ ..... 78 ..... 23จำนวนและร้อยละของกลุ่มตัวอย่างจำแนกตามลักษณะการใช้งานที่มากที่สุด-เมื่อเข้าใช้งานอินเตอร์เน็ต79
ตารางที่ ..... หน้า25 จำนวนและร้อยละของกลุ่มตัวอย่างจำแนกตามลักษณะความคิดเห็นต่อความจำเป็นในการใช้เครื่องมือค้นหาเว็บไซต์ (Search Engine) ในการค้นหาข้อมูลเพื่อวางแผนก่อนการท่องเที่ยวอำเภอหัวหิน จังหวัดประจวบคีรีขันธ์80
ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานของความคิดเห็นต่อความพึงพอใจของการ เข้าใช้อินเตอร์เน็ต ..... 80
จำนวนและร้อยละของกลุ่มตัวอย่างจำแนกตามความคิดเห็นต่อเว็บไซต์ที่ใช้ใน การค้นหาข้อมูลเกี่ยวกับการท่องเที่ยวที่เข้าใช้บ่อยที่สุด ..... 81
จำนวนและร้อยละของกลุ่มตัวอย่างจำแนกตามความคิดเห็นต่อเว็บไซต์ที่ใช้ใน การค้นหาข้อมูลเกี่ยวกับการท่องเที่ยวที่เข้าใช้บ่อยเป็นอันดับ 2 ..... 81
จำนวนและร้อยละของกลุ่มตัวอย่างจำแนกตามความคิดเห็นต่อเว็บไซต์ที่ใช้ใน การค้นหาข้อมูลเกี่ยวกับการท่องเที่ยวที่เข้าใช้บ่อยเป็นอันดับ 3 ..... 82
ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานของความพึงพอใจต่อเครื่องมือค้นหาเว็บ- ไซต์โดยใช้เว็บเชิงความหมายด้านเนื้อหา ..... 82
(31 คค่าเฉลี่ยเละส่วนเบี่ยงเบนมาตรฐานของความพึงพอใจต่อเครื่องมือค้นหาเว็บ
ไซต์โดยใช้เว็บเชิงความหมายด้านการออกแบบ ..... 83
42 เงื่อนไขของสับคลาสของคลาส Accommodation ..... 215

ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานของความพึงพอใจต่อเครื่องมือค้นหาเว็บไซต์โดยใช้เว็บเชิงความหมายด้านการจัดรูปแบบของเว็บไซต์..84
ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานของความพึงพอใจต่อเครื่องมือค้นหาเว็บ- ไซต์โดยใช้เว็บเชิงความหมายด้านประโยชน์และการนำไปใช้. ..... 85
เว็บไซต์ที่ใช้ค้นหาข้อมูลมาใส่ออนโทโลยี ..... 150
สรุปคำสั่งของ OWL Lite *, OWL DL และ OWL Full. ..... 161
ไวยากรณ์ OWL ที่เกี่ยวกับคลาส ..... 162
ไวยากรณ์ OWL ที่เกี่ยวกับอินสแตนซ์ ..... 163
ไวยากรณ์ OWL ที่เกี่ยวกับคุณสมบัติ ..... 163
เทอมที่ใช้ใน OWL Restriction กับความสัมพันธ์. ..... 164
รายละเอียดของคลาส Accommodation. ..... 214
ตารางที่ ..... หน้า
43 รายละเอียดของคลาส Activity ..... 217
44 รายละเอียดของคุณสมบัติของคลาส Activity ..... 217
45
รายละเอียดของคลาส Attraction ..... 218
46 ไวยากรณ์ OWL ที่เกี่ยวกับคุณสมบัติ ..... 163
47 รายละเอียดของคลาส ContactData ..... 219
48 รายละเอียดของคุณสมบัติของคลาส ContactData ..... 219
49
รายละเอียดของคลาส Event ..... 220
รายละเอียดของคุณสมบัติของคลาส Event ..... 220
รายละเอียดของคลาส Facility ..... 222
รายละเอียดของคุณสมบัติของคลาส Facility ..... 222
รายละเอียดของคุณสมบัติของคลาส BedFacility นอกเหนือจากคลาส Facility ..... 222
รายละเอียดของคุณสมบัติของคลาส DoubleBed นอกเหนือจากคลาส Facility ..... 223
รายละเอียดของคุณสมบัติของคลาส SingleBed นอกเหนือจากคลาส Facility.. ..... 223
รายละเอียดของคุณสมบัติของคลาสRoomFacilityนอกเหนือจากคลทสFacility ..... 223
รายละเอียดของคุณสมบัติของคลาส ConnectionRoom นอกเหนือจาก ..... 223
RoomFacility
รายละเอียดของคุณสมบัติของคลาส GuestRoom นอกเหนือจากคลาส ..... 224
RoomFacility
รายละเอียดของคลาส Location ..... 226
รายละเอียดของคุณสมบัติของคลาส Location. ..... 226
61
รายละเอียดคุณสมบัติของคลาส GPSCoordinates นอกเหนือที่ได้จากคลาส. ..... 226
รายละเอียดของคลาส LocationType ..... 227
รายละเอียดคุณสมบัติของคลาส PostalAddress นอกเหนือที่ได้จากคลาส ..... 227 รายละเอียดคุณสมบตตของคลาส PostalAddress นอกเหนือที่ ได้จากคลาส ....... 227
Location........................................................................................
รายละเอียดของคุณสมบัติของคลาส LocationType ..... 227
เงื่อนไขของสับคลาสของคลาส LocationType ..... 228
66 รายละเอียดของคลาส OtherCriteria ..... 228
67 ..... 228Location
ตารางที่ ..... หน้า
68 รายละเอียดของคลาส Period ..... 229
69 รายละเอียดของคุณสมบัติของคลาส Season ..... 230
70 รายละเอียดของคุณสมบัติของคลาส OpeningHours ..... 230
71 รายละเอียดของคุณสมบัติของคลาส DateTimePeriod ..... 230
72
รายละเอียดของคุณสมบัติของคลาส DatePeriod ..... 231
73 รายละเอียดของคุณสมบัติของคลาส TimePeriod ..... 231
74 รายละเอียดของคลาส Site ..... 233
75 รายละเอียดของคุณสมบัติของคลาส Site. ..... 234
76
รายละเอียดของคุณสมบัติของคลาส Infrastructure ..... 234
77 รายละเอียดของคลาส Subsidiary ..... 235
78 รายละเอียดของคุณสมบัติของคลาส Subsidiary ..... 235
79 รายละเอียดของคุณสมบัติของคลาส AccomodationPriceRate ..... 235
80 รายละเอียดของคุณสมบัติของคลาส Category ..... 236
81 / รายละเอียดของคณสมบัติของคลาส Currency รายละเอียดของคุณสมบัตของคลาส Language ..... 236 ..... 82 ..... 236
83 รายละเอียดของคุณสมบัติของคลาส Price ..... 236
84 รายละเอียดของคลาส Transportation ..... 237
85 รายละเอียดของคุณสมบัติของคลาส Transportation ..... 237

## สารบัญภาพ

ภาพที่หน้า
3 สถาปัตยกรรมของแอพพลิเคชันดั้งเดิม ..... 12
7 สถิติของเว็บเชิงความหมายที่ Swoogle รวบรวมอยู่ในหัวข้อ Swoogle Today ..... 18
ขั้นตอนการรวมกันของHarmo-TEN ..... 19
ขั้นตอนการพัฒนาออนโทโลยี ..... 21
การสร้าง OWL โดยใช้โปรแกรม Editplus ..... 22
การสร้างโดยเครื่องมือแก้ไขออนโท โลยี Protégé 3.3.1 ..... 24
องค์ประกอบของอุตสาหกรรมการท่องเที่ยว ..... 25
วงจรนักที่งเที่ยว ..... 26
ขั้นอนการเปียยบเทียบคิวรีต่อเนื่องกันที่มีกฎต่างกัน ..... 30
คิวรีที่เชื่อมกันแล้วนำมาเปรียบเทียบ ..... 32
ขั้นตอนที่ใช้ในการค้นหาเว็บทั่วไป ..... 36
ไลบราลี่ที่ใช้ใน The Berlin SPARQL Benchmark ..... 36
สถาปัตยกรรมของระบบ ..... 39
องค์ประกอบการพัฒนาโปรแกรมเว็บเชิงความหมายของงานวิจัยนี้ ..... 40
Context Diagram ของระบบเว็บเชิงความหมายการท่องเที่ยวหัวหิน ..... 41
Level 0 ของระบบเว็บเชิงความหมายการท่องเที่ยวหัวหิน ..... 42
Level 1 ของระบบย่อยควบคุมการสร้างและแสดงผลเอกสาร RDF ..... 43
Level 1 ของระบบย่อยค้นหาเชิงความหมาย. ..... 44
ER Diagram ..... 45
คลาสและความสัมพันธ์ระหว่างคลาสในออนโทโลยีการท่องเที่ยวของอำเภอ- หัวหิน ..... 46
การวัดค่า DL Expressivity ของออนโทโลยีที่ 1 ..... 49
ภาพที่ ..... หน้า
สรุปการวัดค่าของคลาส เงื่อนไข และคุณสมบัติ ..... 50
ออนโทโลยีของการท่องเที่ยวของอำเภอหัวหินสร้างโดย Protégé 3.3.1. ..... 51
แสดงกราฟคิวรีระดับที่ 1 ..... 53
แสดงกราฟคิวรีระดับที่ 2 ..... 54
แสดงกราฟคิวรีระดับที่ 3 ..... 55
แสดงกราฟคิวรีระดับที่ 4 ..... 56
แสดงกราฟคิวรีระดับที่ 5 ..... 58
ส่วนหนึ่งของออนโทโลยีของการท่องเที่ยวอำเภอหัวหินที่สร้างจากProtégé 3.3.1 ..... 59
แผนผังแสดงการทำงานของผู้ดูแลระบบในการเพิ่มเมตาดาตา. ..... 64
หน้าจอการตั้งค่าคอนฟิกของ OWL ..... 65
ส่วนการเพิ่มข้อมูลในโดเมน Accommodation. ..... 65
หลังจากเพิ่มข้อมูลจะปรากฏรายละเอียดที่เพิ่มแล้วด้านบน . ..... 66
วิธีการค้นหาตั้งแต่เริ่มรับข้อมูลเพื่อค้นหาเละแสดงผลล ..... 67
ช่องใส่คำสำคัญเพือการค้นหาแบบเท็กซ์สตริง ..... 67
หน้าจอแสดงการค้นหาตามคลาสและคุณสมบัติ ..... 68
การแสดงผลลัพธ์และเวลาที่ใช้ค้นหา ..... 68
กราฟของ RDF/OWL ตามหลักตรรกะของ OWL DL ..... 70
แสดงภาพ โดเมนและ Rank ที่ใช้ในการทดสอบคิวรี ..... 87
กราฟแท่งเปรียบเทียบเวลาที่ใช้รัน RDB และ OWL ของเครื่องทดสอบที่ 1 และ 2 ..... 92กราฟแท่งเปรียบเทียบค่าความซับซ้อนคิวรีตั้งแต่คิวรีที่ 1 ถึงคิวรีที่ 5 ระหว่างฐานข้อมูลเชิงสัมพันธ์และฐานความรู้.93
กราฟแท่งเปรียบเทียบระหว่างค่าความซับซ้อนคิวรีจากฐานข้อมูลเชิงสัมพันธ์และ
เปอร์เซ็นต์การลดลงของดีกรีความซับซ้อนที่ OWL มีต่อ RDB ..... 93
การเปรียบเทียบเวลาที่ได้จากการทดสอบหาค่าอินสแตนซ์จากเงื่อนไขในOWLDL ..... 95
หน้าจอที่ผู้ใช้เลือกเงื่อนไขในการค้นหาห้องประชุม ..... 99
ผลลัพธ์ของการค้นหาห้องประชุมตามที่ระบุสิ่งอำนวยความสะดวก ..... 99
Asserted Hierarchy ที่มีคิวรีที่ทำการทดลอง ..... 106
ภาพที่ ..... หน้า
67 ผลการตรวจ Classification Complete.
ผลการรันหาคำตอบที่เป็นอินสแตนซ์ของคำถาม ........................................... 122
ผลการรันกรณีที่คลาส Inconsistency ................................................................ 123
หน้าจอโลคอลโฮสต์ในเครื่องเซิรฟเวอร์ .................................................... 128
หน้าจอที่ใช้สำหรับ Deploy ไฟล์. war. ..... 128
ชื่อเว็บแอพพลิเคชันที่ Deploy ไป. ..... 129
เข้าสู่หน้าแรกของระบบ. ..... 129
เมื่อคลิกกุ่ม Sign in จะพบหน้าจอเข้าสู่ระบบ. ..... 130
เมื่อคลิกปุ่ม Sign up จะพบหน้าจอสมัครสมาชิก. ..... 130
คำเตือนต่างๆ เมื่อไม่ได้ไส่ข้อความในการสมัครสมาชิก ..... 131
เมื่อสมัครเข้าใช้ระบบสำเร็จจะมีอีเมล์มาแจ้งเพื่อยืนยัน ..... 131
รับอีเมล์แล้วคลิกลิงค์เพื่อยืนยัน ..... 131
ลงทะเบียนสมาชิกสำเร็จ. ..... 132
ภาพที่ ..... หน้า
กรณีลืมรหัสผ่านให้คลิกที่ Forget Password ..... 132
เมื่อเข้าสู่ระบบแล้วสามารถใช้เมนู FTPClient เพื่ออัพโหลดดาวน์โหลดข้อมูลได้ ..... 132
เข้าสู่ระบบ Ontology Manager จะพบการบรรยายรายละเอียดของ โดเมน ..... 133
เมนูตั้งค่า WORKSPACE ..... 133
การกำหนดค่า WorkSpace ที่เซิร์ฟเวอร์และกำหนดพื้นที่โฮตส์ชั่วคราวของเว็บ.. ..... 134
หน้าจอตั้งค่าออนโทโลยีของโดเมน ..... 134
การเพิ่มโดเมนให้ระบบ ..... 135
ตรวจสอบโดเมนที่เพิ่มแล้วในรูปตาราง ..... 135
การตรวจสอบค่าที่เพิ่มในมุมมอง XML ..... 135
เปิดดูไฟล์จากพาธ Location in Server ในภาพที่ 87 ..... 136
เมนูแสดงถึงไฟล์โดเมนในออนโท โลยีที่ผู้ใช้สามารถใส่รายละเอียดได้ ..... 136
หน้าจอแสดงการเติมข้อมูลลงไฟล์โดเมน Accommodation. ..... 137
เติมรายละเอียดของที่พักแรมลงในฟอร์ม ..... 137
หน้าจอรีเฟรชข้อมูลที่เติมแสดงเหนือฟอร์ม ..... 138
ไฟล์ Accommodation.ow ที่ Server ได้รับการอัพเดตที่ท้ายไฟล์. ..... 138
เว็บเพจที่มีการอธิบายรายละเอียดแล้ว ..... 139
การเรียกใช้หน้าจอ Search เพื่อค้นหาคำสำคัญ. ..... 140
ตัวอย่างผลลัพธ์การค้นหาแบบระบุคำสำคัญ ..... 140
ค้นหาแบบก้าวหน้าตามคลาสและคุณสมบัติหลังจากที่กดลิงค์ Ontology Search . ..... 141
ประเภทของเงื่อนไขใน Ontology Search. ..... 141
การระบุเงื่อนไขสิ่งอำนวยความสะดวก ..... 142
ผลลัพธ์ที่ได้จากการค้นหาด้วยสิ่งอำนวยความสะดวก ..... 142
การระบุสถานที่เพื่อค้นหาที่พักแรมในบริเวณนั้น ..... 143
ตัวอย่างที่ได้จากคิวรีและแสดงเฉพาะคอลัมน์ที่ต้องการ ..... 143
การค้นหาที่พักแรมโดยระบุสถานที่ใกล้เคียง ..... 143
ผลลัพธ์ที่ได้จากการค้นหาที่พักแรมโดยระบุสถานที่ใกล้เคียง ..... 144
การใช้โปรแกรมค้นหาสถานที่ท่องเที่ยวที่ใกล้เคียงกับที่พักแรม ..... 144
การค้นหาที่พักแรมโดยระบุสถานที่ท่องเที่ยวใกล้เคียง ..... 145
ภาพที่ ..... หน้า
108
ผลลัพธ์ที่พักแรมจากคิวรีที่ระบุสถานที่ท่องเที่ยวใกล้เคียง ..... 145
109 การค้นหาที่พักแรมของนักท่องเที่ยวแบบประหยัดที่ระบุราคาและกิจกรรม ..... 146
110
ผลลัพธ์การค้นหาที่พักแรมของนักท่องเที่ยวแบบประหยัด ..... 146
111 สำเนาคำร้องขอข้อมูลข่าวสารจากเทศบาลเมืองหัวหิน. ..... 148112
ตัวอย่างตารางที่พักแรมต้นฉบับที่ได้รับจากเทศบาลเมืองหัวหิน ..... 149
ส่วนหนึ่งของสำเนาข้อมูลข่าวสารที่ได้รับจากเทศบาลเมืองหัวหิน ..... 149
114
ความสัมพันธ์ของซุปเปอร์คลาส คลาสและสับคลาส ..... 167
ตัวอย่างการกำหนดคุณสมบัติแบบอินเวอร์ส ..... 170
ตัวอย่างการกำหนดคุณสมบัติแบบฟังก์ชั่น ..... 171
ตัวอย่างการกำหนดคุณสมบัติแบบฟังก์ชั่นอินเวอร์ส ..... 172
ตัวอย่างการกำหนดคุณสมบัติแบบทรานซิทีฟ ..... 172
ตัวอย่างการกำหนดคุณสมบัติแบบสมมาตร ..... 175
แผนภาพแสดงการอิมพอร์ตและสมมูลระหว่าง 2 โดเมน ..... 181
การ่ใช้ ow:quivalentClass ทำให้ทั้ง 2 โดเมนจะมีอีนสแตนต์กลุ่มเดียวกัน ..... 181
การใช้ owl:quivalentProperty ทำให้คุณสมบัติต name สมมูลกับ houseTitle. ..... 182
การกำหนดดิสจอยน์คลาส ..... 184
ตัวอย่างการใช้ unionOf ..... 185
การใช้ complementOf ..... 186
การใช้ intersectionOf. ..... 187
การใช้ implicit intersectionOf. ..... 188
หน้าจอเข้าสู่โปรแกรม Protégé 3.3.1 ..... 190
หน้าจอเลือกรูปแบบไฟล์เพื่อสร้างโครงการ ..... 191
หน้าจอตั้งชื่อ URI ของออนโทโลยีของโครงการหรือปล่อยตามค่าปกติ ..... 192
หน้าจอเลือกโปรไฟล์ระดับภาษา OWL ของโครงงาน ..... 192
หน้าต่างของโปรแกรม Protégé 3.3 .1 และแท็บมาตรฐานต่างๆ ในการทำงาน. ..... 193
หน้าจอเลือกรูปแบบไฟล์เพื่อสร้างโครงการ ..... 194
หน้าจอตั้งชื่อ URI ของออนโทโลยีของโครงการหรือปล่อยตามค่าปกติ ..... 192
หน้าจอเลือกโปรไฟล์ระดับภาษา OWL ของโครงงาน ..... 192
ภาพที่ ..... หน้า
132

หน้าต่างของโปรแกรม Protégé 3.3.1 และแท็บมาตรฐานต่างๆ ในการทำงาน.
193133134
หน้าต่างบันทึกชื่อและที่อยู่โครงการ ..... 193
หน้าจอส่วนแก้ไขข้อมูลคลาสและส่วนประกอบ ..... 194
สร้างคลาสแรก เลือกเมนู Create subclass ..... 194
เติมชื่อคลาสและรายละเอียดของคลาสลงในหน้าจอฝั่งขวามือ ..... 195
การเลือกเมนู Create sibling class เพื่อสร้างคลาสในระดับเดียวกัน ..... 195
การสร้าง Sibling class ..... 195
การเลือกใช้เมนู Delete selected class(es) ..... 196
เมนูต่างๆ ที่เกี่ยวข้องกับการตั้งค่าดิสจอยน์แก่คลาส. ..... 197
การตั้งค่าดิสจอยน์แก่คลาส ..... 197
การเริ่มสร้าง Object Property ..... 197
ความสัมพันธ์ระหว่างคลาส Accommodation และ Category ..... 198
หน้าต่างการสร้างโดเมนเฉพาะคลาส. ..... 198
หน้าต่างกรสร้างเรนจัเฉพาะคลาส ..... 199
โดเมนและเรนจ์ที่กำหนดแล้วเสร็จ ..... 199
หน้าต่างให้เลือกคุณสมบัตี่ทีมอยู่แล้วเพื่อกำหนดอินเวอร์สของคุณสมบัติ ..... 200
หน้าต่างสร้างคุณสมบัติอินเวอร์สขึ้นใหม่โดยกดปุ่ม Create New Inverse
Property ..... 200
หน้าต่างกรอกรายละเอียดของคุณสมบัติอินเวอร์ส ..... 200
เมื่อสร้างคุณสมบัติของวัตถุแล้วเสร็จ ..... 201
การตั้งค่า OWL expression ในเรนจ์ ..... 201
Protégé-OWL Syntax ..... 201
เมื่อต้องการใช้เครื่องหมายยูเนี่ยนในการกำหนดเรนจ์ให้เขียนแยกบรรทัดแทน ..... 202
ระบุโดเมนหรือเรนจ์แบบคลาสละบรรทัดจะได้ไค้ด UnionOf เช่นเดียวกับ ..... 202
ประโยค OR
ตัวอย่างการแสดงรายละเอียดของ Object Property ตามลำดับชั้น ..... 203
หน้าจอเมนูการตั้งค่าการบรรยายคุณสมบัติ ..... 203
มุมมองแบบทริพเพิลของคุณสมบัติ. ..... 204
ภาพที่ ..... หน้า
158
การสร้างคุณสมบัติแบบ Functional ..... 204
159
การสร้างคุณสมบัติแบบ InverseFunctional ..... 205
160
การสร้างคุณสมบัตไไว้ก่อนเพื่อรอระบุว่าเป็นแบบสมมาตร ..... 205161 เมื่อกำหนดให้คุณสมบัติเป็นแบบสมมาตรแล้วโปรแกรมจะกำหนดอินเวอร์สให้เอง206
162
กำหนดให้คุณสมบัติเป็นแบบทรานซิทีฟ ..... 206
163
เมื่อคลิกขวาที่คุณสมบัติจะปรากฎตัวช่วยในการสร้างและแปลงค่าคุณสมบัติของวัตถุ207
164
การเรียกดูรายชื่อของสับพร็อพเพอร์ตี้ ..... 208
165
การสร้างคุณสมบัติแบบ DataType ..... 208
การสร้างคุณสมบัติชื่อ name และรายละเอียดของโดเมนและเรนจ์ ..... 209
เปลี่ยนเป็นมุมมองทริพเพิลเพื่อดูรายละเอียดของโดเมนและเรนจ์ ..... 209 ..... 167
ชนิดข้อมูลของเรนจ์ ..... 209
168169การจัดหน้าจอทำในแท็บ Forms210การสร้างอินสแตนซ์ตามหน้าจอที่จัดไว้210
การแปลง Conjunctive Query ให้อยู่ในรูปของ Ontology Concept ใน Protégé ..... 211
การหาคำตอบในส่วน NECESSARY \& SUFFICIENT CONDITIONS ของ
Protégé ..... 212ผลลัพธ์ของ NECESSARY \& SUFFICIENT CONDITIONS ที่ได้จาก Reasoner212
174
ออนโทโลยีของคลาส Accommodation ..... 214
175
ออนโทโลยีของคลาส Activity ..... 216
176
ออนโทโลยีของคลาส Attraction ..... 218
177
ออนโทโลยีของคลาส ContactData ..... 219
178
ออนโทโลยีของคลาส Event ..... 220
179
ออนโทโลยีของคลาส Facility ..... 221
180
ออนโทโลยีของคลาส Location และ LocationType ..... 225
181
ภาพจากโปรแกรม Jambalaya แสดงคลาส สับคลาสและอินสแตนซ์ของLocation Type225
ภาพที่ ..... หน้า
182 ออนโทโลยีของคลาส OtherCriteria ..... 228
183
ออนโทโลขีของคลาส Period ..... 229
184 ออนโทโลยีของคลาส Site. ..... 231
185
ออนโทโลยีของคลาส Site ที่แจกแจงสมาชิกของสับคลาส Infrastructure ..... 232
186
ออนโทโลยีของคลาส Subsidiary ..... 234
187 ออนโทโลยีของคลาส Transportation ..... 236
188 ผลลัพธ์จากการรัน SPARQL ด้วยแอพพลิเคชันของงานวิจัย ..... 239
189 ผลลัพธ์จากคำถาม ASK ..... 240

## บทที่ 1

บทนำ

## 1. ความเป็นมาและความสำคัญของปัญหา

ปัจจุบันมีการใช้งานเทคโนโลยีสารสนเทศเพื่อการท่องเที่ยวด้านสินค้าและบริการถึง ร้อยละ 50 ของการใช้บริการบนอินเตอร์เน็ตทั้งหมด ปัญหาที่พบคือการเก็บข่าวสารธุรกิจด้าน ท่องเที่ยวส่วนใหญู่เป็นแบบกระจายและหลายรูปแบบอยู่ในระบบอินเตอร์เน็ต ทำให้รวบรวม ข้อมูลก่อนการท่องเที่ยวได้ยาก เนื่องจากคำถามที่เกี่ยวข้องกับการท่องเที่ยวเป็นคำถามที่มีหลาย คำถามตามขั้นตอนที่ต้องการท่องเที่ยว ดังนั้นเมื่อค้นหาผ่านเครื่องมือค้นหาเว็บไซต์ (Search Engine) แล้วผลลัพธ์ที่ได้ต่อหนึ่งคำถามมีจำนวนมาก บางครั้งพบเอกสารที่เกี่ยวข้องอีกจำนวน หลายหน้าและหลายพันรายการ ผู้ใช้ต้องพิจารณาส่วนที่ต้องการจากผลลัพธ์ทั้งหมดที่ค้นหาได้ ดังนั้นการจัดการข้อมูล การแปลความ และการประมวลผลต้องใช้เวลามาก เพราะมนุษย์เท่านั้นที่ เป็นผู้เข้าใจผลลัพธ์ทั้งหมด ซึ่งถือว่าใช้ความสามารถของคอมพิวเตอร์ได้ไม่คุ้มค่า สาเหตุเนื่องจาก ระบบดัชนีที่เช้เก็บข้อมูลคคาส์าคัญเพื่อใช้ค้นหาของเครืองมือคคนหาเว็บไซต์ไม่สามารถตคความคำที่ มีหลายความหมายหรือคำหรือวลีที่มีความหมายเหมือนกันได้ จึงได้มีการนำหลักการของเว็บเชิง ความหมาย (Semantic Web) มาแก้ไขปัญหาดังกล่าว ซึ่งผู้วัจัยได้นำเสนอหลักการเว็บเชิง ความหมายในขอบเขตของสารสนเทศด้านการท่องเที่ยวของอำเภอหัวหิน เพื่อให้เห็นความชัดเจน ในการแก้ไขปัญหาแต่ละด้านได้มากยิ่งขึ้น

## 2. วัตถุประสงค์การวิจัย

2.1 เข้าใจหลักการทำงานของเว็บเชิงความหมายและสามารถประยุกต์ใช้แนวคิดเว็บ เชิงความหมายในการสืบค้นความสัมพันธ์ของข้อมูล โดยสืบค้นจากจุดเดียวให้ได้ผลลัพธ์ใกล้เคียง กับความต้องการของผู้ใช้สารสนเทศด้านการท่องเที่ยวในอำเภอหัวหินมากที่สุด
2.2 เปรียบเทียบประสิทธิผลของการค้นหาแบบฐานข้อมูลเชิงสัมพันธ์กับการค้นหา ตามหลักการของเว็บเชิงความหมาย
2.3 การประเมินผลความพึงพอใจของผู้ใช้ด้วยการตอบแบบสอบถาม

## 3. สมมติฐานการวิจัย

การนำแนวคิดเว็บเชิงความหมายมาใช้สร้างเว็บ โดยประยุกต์ใช้การเก็บรายละเอียดของ เอกสารเว็บในรูปแบบเชิงความหมายตามโครงสร้างออนโทโลยีมาตรฐานช่วยส่งผลให้การค้นหา เชิงความหมาย มีประสิทธิภาพมากกว่าการค้นหาแบบเชิงสัมพันธ์โดยวัดค่าความซับซ้อนของคิวรี และวัดผลความพึงพอใจของผู้ใช้ด้วยการใช้เบบสอบถาม

## 4. ประโยชน์ที่คาด่าจะได้รับ

4.1 สามารถนำต้นแบบระบบเว็บเชิงความหมายเกี่ยวกับสารสนเทศการท่องเที่ยวนี้ ไปใช้งานได้จริงและขยายขอบเขตต่อไปได้ในอนาคต
4.2 สามารถนำแนวคิดของการเก็บเอกสารเชิงความหมาย มาปรับปรุงเครื่องมือค้นหา เว็บไซต์ให้มีประสิทธิภาพมากกว่าการเก็บข้อมูลแบบฐานข้อมูลเชิงสัมพันธ์

## 5. ขั้นตอนการวิจัย

5.1 รวบรวมข้อมูลจากเอกสารและงานวิจัยที่เกี่ยวข้อง
5.2 วิเคราหและเลือกใช้ทฤษฎีและอัลกอริทึมที่เหมาะสม
5.3 เขียนโปรแกรมเว็บเชิงความหมาย
5.4 ทำการทดลองเปรียบเทียบประสิทธิผลโดยวัดความซับซ้อนของการคิวรีด้วย หลักการเว็บเชิงความหมายเปียยบเทียบกับแบบฐานข้อมูลเชิงสัมพันธ์ และทดสอบความพึงพอใจ ของผู้ใช้เว็บเชิงความหมายด้วยแบบสอบถาม
5.5 วิเคราะห์ผลการทดลอง
5.6 สรุปผลการทดลอง
5.7 รวบรวมข้อเสนอแนะ
6. ขอบเขตการวิจัย
6.1 ศึกษาแนวคิดเทคโนโลยีเว็บเชิงความหมาย เพื่อนำมาประยุกต์ใช้
6.2 ศึกษาและพัฒนาออนโทโลยีสำหรับระบบสารสนเทศด้านการท่องเที่ยว
6.3 ศึกษา SPARQL โปร โตคอลและภาษาคิวรีสำหรับ RDF
6.4 พัฒนาเครื่องมือค้นหาเว็บไซต์ โดยใช้ออนโทโลยีที่พัฒนาด้วยเครื่องมือ Protégé 3.3.1 กำหนดกฎด้วย OWL-DLและเขียนโปรแกรมเชื่อมต่อกับออนโทโลยีด้วย Jena RDF API
6.5 แปลงผลลัพธ์ให้อยู่ในรูปแบบ HTML เพื่อแสดงผลให้ผู้ใช้เข้าใจ ซึ่งประกอบด้วย ระบบย่อยต่อไปนี้

ระบบย่อยที่ 1 ระบบค้นหาแบบเชิงความหมายและแสดงผลลัพธ์การค้นหา ระบบย่อยที่ 2 ระบบจัดการเอกสาร RDF/OWL

เปรียบเทียบระหว่างประสิทธิภาพของการค้นหาตามหลักการของเว็บเชิง ความหมายและการค้นหาบนฐานข้อมูลเชิงสัมพันธ์ โดยแบ่งระดับการค้นหาให้ซับซ้อนต่างกัน 5 ระดับตามความสัมพันธ์ของโดเมนที่ได้จากฐานข้อมูลเชิงสัมพันธ์จากเทศบาลอำเภอหัวหินดังนี้ คิวรีระดับที่ 1 ค้นหาที่พักแรมหรือสถานที่ท่องเที่ยวด้วยค่าคงที่ คิวรีระดับที่ $2,3,4$ และ 5 ค้นหาด้วยคิวรีที่ซับซ้อนกว่าระดับที่ 1 และซับซ้อน ขึ้นตามลำดับด้วยการค้นหาที่พักแรมที่สัมพันธ์กับสถานที่ท่องเที่ยวใกล้เคียง สัมพันธ์กับสิ่งอำนวย ความสะดวก และจุดหมายปลายทาง หลังจากนั้นจึงวัดค่าความซับซ้อนคิวรีด้วยนิยามจาก Vardi (1982:138) แล้วึึงวัดระดับความซับซ้อนจากทฤษฎีของ Calvanese (2005)

ออกแบบออนโทโลยีตามมาตร ฐานการท่องเที่ยวครอบคลุมขอบเขตของ สารสนเทศด้านการท่องเที่ยวของอำเภอหัวหินแบ่งตามโดเมนของที่พักแรม สิ่งที่เกี่ยวข้องกับที่พัก แรมคือสิ่งอำนวยควมสะดวก ข้อมูลเพื่อการติดต่อเช่นหมายลดโทรศัพท์ อีเมล์ เป็นต้นกิจกรรม สถานที่ตั้ง ช่วงเวลาเหตุการณ์สำคัญ สถานที่ท่องเที่ยว ขนส่งมวลชน และร้านอาหารหรือภัตตาคาร โดยเก็บข้อมูลจากเว็บไซต์สารสนเทศที่มีอยู่ในปัจจุบันด้วยคุณสมบัติความสัมพันธ์ตามหลักของ OWL-DLจากนั้นสำรวจความพึงพอใจของผู้ใช้งานที่มีต่อเว็บ!ซต์

## 7. เครื่องมือที่ใช้ในการวิจัย

7.1 ฮาร์ดแวร์

Intel(R) Core(TM) 2 CPU RAM 1 GB,
Intel(R) Core(TM) i5 CPU RAM 4 GB
Hard disk 80 GB
7.2 ซอฟต์แวร์

ระบบปฏิบัติการ: Window XP Professional, Windows 7 Home Premium เครื่องมือในการพัฒนา ประกอบด้วย
Protégé 3.3.1 เป็นเครื่องมือในการสร้างฐานความรู้ตามกฎ OWL-DL Jena Java API เป็นตัวแปลเอกสาร RDF เพื่อถอดความสัมพันธ์และนำข้อมูลไป ใช้ได้ ซึ่งสนับสนุนภาษา Java ภายใน Jena มี ARQ เป็นเครื่องมือคิวรี RDF ด้วยภาษา SPARQL

> Pellet 2.2.2 เป็น Reasoner ฐานข้อมูล ใช้ MySQL เป็นฐานข้อมูลเชิงสัมพันธ์โดยใช้ภาษา SQL คิวรีข้อมูล

## 8. คำนิยามศัพท์เฉพาะ

8.1 เว็บเชิงความหมาย (Semantic Web) เป็นชื่อที่แท้จริงของเว็บรุ่นที่ 3 ที่ W 3 C ให้ นิยามว่ามีจุดมุ่งหมายเพื่อสร้างความชัดเจนแก่เว็บมากขึ้นโดยสร้างเมตาดาตาเป็นสื่อกลางในการ แลกเปลี่ยนข้อมูลระหว่างกัน
8.2 ออนโทโลยี (Ontology) เป็นระบบคำศัพท์ที่มีความสัมพันธ์ในเชิงความหมาย และใช้เป็นโครงร่างพื้นฐานในการอธิบายความรู้เฉพาะด้าน เช่น การแพทย์ การท่องเที่ยว ซึ่ง สามารถนำมาประยุกต์ใช้ในการทำงานของระบบงานต่างๆ เช่น ช่วยขยายคำค้นในระบบสืบค้น ข้อมูล ทำให้ค้นหาและเข้าถึงข้อมูลที่ผู้ใช้งานต้องการจริงๆ นอกจากนี้ยังมีส่วนช่วยในการทำงาน ของระบบการประมวลผลสารสนเทศให้มีประสิทธิภาพมากขึ้น
8.3 อาร์ดีเอฟ (RDF) ย่อมาจาก Resource Description Framework ทำหน้าที่บอก รูปแบบข้อมูล ไวยากรณ์ของแต่ละส่วนที่ใช้แลกเปลี่ยนข้อมูลกัน โดยได้รับการออกแบบขึ้นมา เพื่อให้คอม พิวเตอร์หรือแอพพลี่เคชันของคอมพิเตอร์อ่านและเข้าใจ แต่ไม่ได้ออกแบบ ให้ แสดงผลผ่านเว็บแก่ผู้ใชงงานที่เป็นมนุษย์ ซึ่งภาษาที่ใช้คือ XML และจะเรียกภาษานี้ว้า $\mathrm{RDF} / \mathrm{XML}$ โดยสามารถใช้แลกเปลี่ยนระหว่างคอมพิวเตอร์ต่างประเภทกัน คือระบบปฏิบัติการที่ต่างกันหรือ ใช้ในแอพพลิเคชันที่ใช้ภาษาต่างกันได้ ภาษาอาร์ดีเอฟเป็นส่วนหนึ่งใน Semantic Web Activity ของ W 3 C ซึ่งเป็นผู้ที่นิยามเว็บเชิงความหมาย โดยได้รับการส่งเสริมอย่างเป็นทางการจาก W 3 C Recommendation เมื่อเดือนกุมภาพันธ์ 2547 ตัวอย่างการใช้งานกับเว็บเชิงความหมาย อาทิ อธิบาย คุณสมบัติของสินค้าที่ซื้อขาย อธิบายข่าวสารของเว็บเพจ เช่นคอนเท้นต์ ผู้เขียน และวันที่ ใช้ อธิบายคอนเท้นต์ของเครื่องมือค้นหาเว็บไซต์ หรือใช้อธิบายโครงสร้างห้องสมุดอิเล็กทรอนิกส์ เป็นต้น
8.4 ภาษา OWL ได้รับการนำเสนอโดย W3C Web Ontology Working Group (WebOnt) OWL ถูกพัฒนาเพื่อเป็นส่วนขยายต่อจากภาษา RDF และสืบทอดมาจากภาษาดีเอเอ็ม แอล พลัส ออยด์ (DAML+OIL) ภาษา OWL จัดได้ว่าเป็นองค์ประกอบหนึ่งในเว็บเชิงความหมาย ที่ใช้ในการบรรยายข้อมูลเชิงความหมาย สามารถกำหนดโครงสร้างข้อมูลในลักษณะลำดับชั้น และ อธิบายข้อมูล (Metadata) ที่มีความสัมพันธ์ในระบบฐานข้อมูลได้ รวมทั้งสามารถรองรับการ บรรยายข้อมูลเชิงตรรกะ ชนิดข้อมูล และตัวบ่งปริมาณได้ ทำให้ข้อมูลที่ถูกแทนที่นั้นมีความหมาย มากยิ่งขึ้น ซึ่งภาษา OWL รุ่นที่ 1 แบ่งเป็น 3 ประเภท คือ Owl Life, OWL DL และ OWL FULL

## บทที่ 2

## เอกสารและงานวิจัยที่เกี่ยวข้อง

การจัดทำวิทยานิพนธ์ฉบับนี้ได้ศึกษาค้นคว้างานวิจัยและบทความที่เกี่ยวข้องกับออน โทโลยีเพื่อพัฒนาโปรแกรมประยุกต์เว็บเชิงความหมายงานวิจัยที่เกี่ยวข้อง เครื่องมือและทฤษฎีที่ สำคัญที่ได้ศึกษามีดังนี้

## 1. ที่มาของเว็บเชิงความหมาย

เมื่อปี 1999 เบิร์นเนอร์ส ลี (Berners-Lee 2001) ผู้ก่อตั้ง W3C เสนอแนวคิดว่าเว็บใน อนาคตจะเป็นการประสานงานระหว่างโปรแกรมเมอร์ ผู้ผลิตคอมพิวเตอร์ และบริษัทที่เกี่ยวข้อง โดยมองเว็บในเชิงความหมายว่าเป็นมากกว่าเครื่องมือสื่อสาร ต่อมาในปี 2001 เบิร์นเนอร์ส ลีได้ ตีพิมพ์บทความลงในวารสารวิทยาศาสตร์อเมริกันเรียกแนวคิดดังกล่าวว่า เว็บเชิงความหมาย (Semantic Web) มีจุดหมายหลักเพื่อให้คอมพิวเตอร์เข้าใจความหมายเอกสารและข้อมูลจึงถือว่า เป็นการปฏิวิติความสนมารถของเว็บแบบเดิม ซึ่งได้รับการตอบรับจวกอุตสาหกรรมหลายประเภท เช่น การท่องเที่ยว ลอจิสติกส์ การสร้างซอฟต์แวร์เพื่อรองรับนักพัฒนาภาษาต่างๆ และหน่วยงาน ราชการหลายแห่งได้ทดสอบตามแนวคิดดังกล่าวอาทิ รัฐบาลสหรัฐก่อตั้งโครงการ DARPA Agent Markup Language (DAML) ขึ้น ส่วนสหภาพยุโรปได้บรรจุเรื่องเว็บเชิงความหมายลงเป็นวาระ สำคัญในนโยบายกรอบการทำงานครั้งที่ 6 เป็นต้น

## 1.1 ความแตกต่างระหว่างเว็บปัจจุบันและเว็บเชิงควาหมาย

เรย์โนลด์ และชาร์บาจี (Reynolds and Shabajee 2001) สรุปความแตกต่าง ระหว่างเว็บดั้งเดิมและเว็บเชิงความหมายในงานวิจัยเรื่อง Semantic Web Advanced Development for Europe (SWAD-Europe) ดังตารางที่ 1 โดยกล่าวถึงปัญหาแล้วยกตัวอย่างตามกรณีศึกษาที่ รองรับเว็บเชิงความหมาย เช่นกรณีศึกษาการพัฒนาสถานสงเคราะห์สิ่งมีชีวิตในป่า การแปลงคอนเท้นต์เพื่อนำเสนอแก่ผู้พิการอย่างเหมาะสมโดย W 3 C เป็นต้น จากนั้นตรวจสอบโครงสร้างแอพ พลิเคชัน และสุดท้ายรวบรวมและเปรียบเทียบแต่ละประเด็นที่เกิดจากแอพพลิเคชันที่นำมาสาธิต

ตารางที่ 1 สรุปความแตกต่างระหว่างเว็บดั้งเดิมและเว็บเชิงความหมาย

| ลำดับ | ประเด็นปัญหา | การออกแบบแบบดั้งเดิม | เว็บเชิงความหมาย |
| :---: | :---: | :---: | :---: |
| 1 | การค้นหาและนำเสนอ แบบหลายมิติ | ค้นหาโดยใช้ตัวหนังสือและมี ลำดับที่แน่นอน | ค้นหาตามความหมายออน <br> โทโล-ยีหลักได้หลายมิติ |
| 2 | วิวัฒนาการและการ ขยายตัวของโครงสร้าง ข่าวสาร | ข่าวสารถูกเรียงบันทึกแบบมี โครงสร้าง ออกแบบบนลงล่าง และบำรุงรักษาจากส่วนกลาง | ข่าวสารแบบขยายและกึ่งโครงสร้าง โดยพัฒนาล่างขึ้นบนและ อัพเดตแบบกระจาย |
| 3 | การขยายโครงสร้าง ของชุมชนการสื่อสาร | ชุมชนเพิ่มข่าวสารและแสดง ผล ตามโครงสร้างของเว็บที่ได้ กำหนดไว้แล้ว | ชุมชนสามารถเพิ่มชั้นและ โครงสร้างใหม่และเพิ่มข่าวสาร ตามโครงสร้างนั้นได้ |
|  | การขยายมุมมองของ ชุมชนการสื่อสาร | การจัดการและเก็บคอนเท้นต์ไว้ที่ ส่วนกลาง | จัดการและเก็บคอนเท้นต์แบบ เดี่ยวและกระจาย แต่มีมุมมองที่ ในชุดเดียวกัน |
| 4 | ความสามารถในการ ริบรามทรัพยกกรีี กระจายอยู่ | ผู้พัฒนาต้องหาข้อมูลของแต่ละ เว็บทำทีละหน้าผำนฟอร์ม แต่ละ สำเนาต้องบำรุงรักษาแยกกัน | ผู้พัฒนาผลิตข้อมูลแบบนำ กลับมาใช้ได้ โดยใช้รวมกันใน หลายเว็บโดยอัพเดตที่เดียว |
| 5 | การรวมข่าวสารข้าม เว็บ | เป้าหมายเว็บอยู่ที่การเข้าชมของ คนซึ่งไม่เหมาะกับเครื่องโดยจะ สามารถใช้คอนเท้นต์ร่วมกันได้ เมื่อบริษัทที่รับผิดชอบร่วมมือกัน | เครื่องสามารถเข้าถึงโครงสร้าง ข่าวสารนั้นได้โดยตรงเพื่อ ความสะดวกผ่านการร่วมมือ ระหว่างเอ-เจนต์ของเว็บ |

ที่มา: Dave Reynolds and Paul Shabajee, SWAD-Europe deliverable 12.1.5: semantic portals requirements Specification [Online], accessed 19 July 2008. Available from http://www.w3.org/ 2001/sw/Europe/reports/requirements_demo_2/

## 1.2 การเปรียบเทียบระหว่างภาษาเชิงวัตถุและภาษา RDF/OWL

ตารางที่ 2 แสดงการเปรียบเทียบระหว่างภาษาเว็บเชิงความหมายและภาษาเชิงวัตถุ

| ภาษาเชิงวัตถุ | RDF/OWL |
| :---: | :---: |
| รูปแบบหลักประกอบด้วยคลาส พร็อพเพอร์ตี้และอินสแตนซ์ (individual) สับคลาสสืบทอด |  |
| คุณสมบัติของคลาสได้ พร็อพเพอร์ตี้สามารถมีค่าเป็นออบเจ็กต์หรือตัวอักษรได้ |  |

ตารางที่ 2 (ต่อ)

| ภาษาเชิงวัตถุ | RDF/OWL |
| :---: | :---: |
| คลาสและอินสแตนซ์ |  |
| คลาสเป็นประเภทของอินสแตนซ์ | คลาสเป็นเซตที่ประกอบด้วยอินสแตนซ์ |
| แต่ละอินสแตนซ์มีหนึ่งประเภทคลาส แต่ทุก คลาสไม่สามารถใช้อินสแตนซ์ร่วมกันได้ | แต่ละอินสแตนซ์สามารถเป็นสมาชิกของคลาส ต่างๆ ได้ |
| เวลารัน อินสแตนซ์ | สมาชิกคลาสสามารถปลี่ยนแปลงได้เวลารัน |
| รู้ชื่ชื่อคลาสทั้งหมดเวลาคอมไพล์และเปลี่ยนไม่ได้ | สามารถสร้างคลาสและเปลี่ยนแปลงได้เวลารัน |
| ตัวคอมไพล์ถูกใช้เวลาบิลด์ แล้วแสดงข้อผิดพลาดเวลาคอมไพล์ | Reasoner ใช้เพื่อแบ่งคลาสและตรวจสอบความ ถูกต้องเวลารันหรือบิลด์ |
| พร็อพเพอร์ตี้, แอตตริบิวท์ และค่าต่างๆ |  |
| พร็อพเพอร์ตี้ได้รับการกำหนดจากคลาสแบบโล คอล(และจากสับคลาสผ่านการสืบทอด) | พร็อพเพอร์ตี้เป็นเอ็นติตี้แบบสแตนอโลนที่อยู่ ได้โดยไม่ต้องมีคลาสมาจับ |
| มีค่าของอินสแตนส์ในประเภทที่ถูกต้องเพื่อแนบ | อินสแตนส์มีค่าแอตตริบิวต์สำหรับพร็อพเพอร์ตี้ |
| ไปกับพร้อพเพอรีตี้ ส่วนเรินจ์ใช้เพื่อตรวจสอบ ประเภท | ใดๆซึ่งตรวจสอบประเภทเละเงื่อนาขาโยใด้ เรนจ์และโดเมน |
| เข้ารหัสทั้งความหมายและพฤติกรรมของคลาส ผ่านฟังก์ชั่นและเมธอด | คลาสมีความหมายในตัวเองอย่างชัดเจนในเทอม ของประโยค OWL ไม่มีโค้ดบังคับใส่ไปด้วย |
| คลาสสามารถห่อหุ้มสมาชิกที่เข้าถึงแบบส่วนตัว ได้ | ทุกๆ ส่วนของไฟล์ RDF/OWL เป็นสาธารณะ และสามารถเชื่อมต่อจากที่ไหนก็ได้ |
| ระบบปิด: ถ้าไม่มีข้อมูลมากพอที่จะพิสูจน์ ประโยคว่าจริง ต้องให้ค่าเป็นเท็จ | ระบบเปิด: ถ้าไม่มีข้อมูลมากพอที่จะพิสูจน์ ประโยคว่าจริง แล้วค่านั้นเป็นจริงหรือเท็จก็ได้ |
| หน้าที่ในกระบวนการออกแบบ |  |
| บาง API สามารถใช้ร่วมกันระหว่างแอพพลิเค ชันได้ มีบาง UML ไดอะแกรมที่ใช้ร่วมกันได้ | RDF และ OWL ได้รับการออกแบบจากทั่วโลก รูปแบบโดเมนจึงใช้ร่วมกันแบบออนไลน์ได้ |
| รูปแบบโดเมนได้รับการออกแบบเป็นส่วนของ สถาปัตยกรรมซอฟต์แวร์ | รูปแบบโดเมนได้รับการออกแบบเพื่อแสดง ความรู้เกี่ยวกับโดเมน และสำหรับการรวมข้อมูล |
| UML, Java, C\# และอื่นๆ เป็นเทคโนโลยีที่โต เต็มที่แล้วได้รับการสนับสนุนจากภาคธุรกิจและ เครื่องมือโอเพนซอร์สต่างๆ มากมาย | เว็บเชิงความหมายคือเทคโนโลยีที่รวมกับ เครื่องมือโอเพนซอร์สและนักธุรกิจส่วนน้อย |

ตารางที่ 2 (ต่อ)

| ภาษาเชิงวัตถุ | RDF/OWL |
| :---: | :---: |
| ลักษณะทั่วไป |  |
| อินสแตนซ์เป็นอะไรก็ได้ที่ไม่สามารถรู้ที่อยู่ได้ ง่ายจากการทำงานของโปรแกรมภายนอก | รีซอร์สของ RDF และ OWL ทุกชื่อมี URI ที่เป็น เอกลักษณ์เมื่อต้องการเรียกใช้ |
| รูปแบบ UML สามารถเชื่อมต่อกับ XML ซึ่งเป็น การประสานงานแลกเปลี่ยนกันระหว่างภาษาแต่ ไม่ใช่ระหว่างเว็บ ส่วนจาวาก็สามารถเชื่อมต่อกับ XML ได้เช่นกันหรือมีแบบมาตรฐานอยู่แล้ว | RDF และ OWL มีมาตรฐานเหมือน XML ที่มี URI ที่เป็นเอกลักษณ์สำหรับแต่ละรีซอร์สที่อยู่ ในไฟล์ |
| ที่มา: Holger Knublauch and others, A Semantic Web Primer for Object-Oriented Software |  |
| Developers [Online], accessed 19 May 200 /BestPractices/SE /ODSD/ | Available from http://www.w3.org/2001/sw |

## 1.3 มุมมองของเว็บเชิงความหมาย

มมมองเว็บเชิงความหมาย (Passin 2004: 3-4) สรุปได้ดังตารางที่ 3

ตารางที่ 3 มุมมองของเว็บเชิงความหมาย

| มุมมอง | แนวคิด |
| :--- | :--- |
| เครื่องอ่านข้อมูลได้ | กำหนดข้อมูลลงบนเว็บและเชื่อมโยงโดยเครื่อง |
| การทำซอฟท์แวร์ <br> ตัวแทนให้ฉลาด | นำาเสนอข้อมูล โดยตัวแทนดึงข้อมูล ปรับแต่งข้อมูลข่าวสาร ให้มี <br> เรื่องราวที่สอดคล้องกันซึ่งดีกว่าอ่านมาแล้วแสดงเท่านั้น |
| การเผยแพร่ข้อมูล | เพิ่มความยืดหยุ่นให้ HTML โดยใช้อธิบายข้อมูลในเว็บ เพื่อเข้าถึงหรือ <br> เชื่อมกัน เกิดเป็นเว็บเชื่อมโยงกันขนาดใหญ่ได้ |
| การทำโครงสร้าง <br> พื้นฐานอัตโนมัติ | เบอร์เนอร์ส ลี ให้ความเห็นว่าเว็บเชิงความหมายเป็นการทำโครงสร้าง <br> พื้นฐานอัตโนมัติ ซึ่งเว็บดั้งเดิมยังขาดอยู่ |
| การทำงานรับใช้มนุษย์ | ซอฟท์แวร์ช่วยรวบรวม ดึงง และจัดดัชนีตามตำแหน่งที่เก็บทรัพยากร <br> อย่างเข้าใจกัน เพื่อตอบสนองมนุษย์ได้เหมาะสม |
| คำอธิบายที่ดีขึ้น | การทำเอกสารเว็บเพจธรรรมดา ให้มีเนื้อหาแบบที่เครื่องสามารถนำไป <br> ทำงานและเชื่อมโยงเข้าด้วยกันได้ |

ตารางที่ 3 (ต่อ)

| มุมมอง | แนวคิด |
| :--- | :--- |
| การปรับปรุงการสืบค้น | เปลี่ยนการค้นหาจากที่ค้นโดยคำคัญ มาเป็นความหมายของสาระและ <br> เนื้อหาแทน |
| การทำเว็บเซอร์วิส | นำเว็บเชิงความหมายมาใช้กับเว็บเซอร์วิส โดยให้ซอฟท์แวร์ตัวแทน <br> ทำงานแบบอัตโนมัติจากที่เป็นแบบแมนนวล |

1.4 ระดับขั้นของการสื่อความหมาย


ภาพที่ 1 ระดับขั้นของการสื่อความหมายระดับอ่อนไปสู่ระดับเข้มแข็ง
ที่มา : Michael C. Daconta, Leo J. Obrst, and Kevin T. Smith, The Semantic Web: A Guide to the Future of XML, Web Services, and Knowledge Management (Indianapolis: Wiley Publishing, Inc., 2003), 157.
 ความหมายที่ดีกว่า จากเริ่มต้นมีเพียงหน่วยควบคุมศัพท์ที่เก็บรายการศัพท์ การสื่อความหมายมีน้อย

มาก เมื่อมีการจัดโครงสร้าง แยกลำดับเป็นความสัมพันธ์แบบโหนดพ่อ-ลูกนำไปสู่เทคนิคการแบ่ง ประเภท จนพัฒนาเป็นการสื่อถึงความสัมพันธ์และมีกฎหรือข้อเท็จจริงมากำกับ จึงกลายเป็นออน โทโลยี ดังนั้นภาพนี้จึงเป็นระดับชั้นของออนโทโลยีด้วย ในขณะที่ Leuf (2006: 57) สรุปการ ปรับปรุงด้านอุตสาหกรรมเป็น 2 ระดับดังนี้ คือ เว็บเชิงความหมายระดับลึก มีจุดมุ่งหมายเพื่อให้เอเจ้นต์อัจฉริยะอนุมานได้ เป็นเป้าหมายระยะยาวและเป็นเริ่มต้นรูปแบบปัญญาประดิษฐ์แบบ กระจายที่ยังแก้ปัญหาไม่สำเร็จ และเว็บเชิงความหมายระดับตื้น ไม่ลึกซึ้งเท่าระดับสูง โดยเน้นที่การ ใช้งานแทนการบำรุงรักษาและค้นหาด้วยฐานความรู้ รวบรวมข้อมูลและใช้กับเทคโนโลยีที่ทันสมัย อยู่เสมอ ซึ่งเป็นสิ่งที่ผู้ใช้ได้รับประโยชน์มากกว่าการใช้งานระยะสั้นตามที่เข้าใจกัน โดยงานวิจัยนี้ อยู่ในระดับนี้
1.5 สถาปัตยกรรมทางตรรกะ


ภาพที่ 2 ระดับชั้นของเว็บเชิงความหมายที่มีการพัฒนาเพิ่มเติมล่าสุดจาก W 3 C
ที่มา : Jeffrey T. Pollock, Semantic Web For Dummies ${ }^{\circledR}$ (Indianapolis: Wiley Publishing, Inc., 2009), 226.

จากภาพที่ 2 แผนภาพสถาปัตยกรรมทางตรรกะ (Logical Architecture Diagram) หรือ บางทีเรียกกันว่าชั้นเค้ก (Layer Cake) ของเว็บเชิงความหมายที่บิร์นเนอร์ส ลี และ W 3 C ได้ พัฒนาขึ้น โดยชั้นต่างๆ มีความหมายดังนี้
1.5.1 Unicode และ URIs (Uniform Resource identifiers) เป็นเส้นทางมาตรฐาน ที่อ้างถึงเอ็นติตี้ ส่วน Unicode เป็นสัญลักษณ์อักขระ (Stumme and others 2006 : 125)
1.5.2 XML (Extensible Markup Language) -ภาษาที่ใช้แลกเปลี่ยนข้อมูลผ่านเว็บ
1.5.3 XML Schema - โครงสร้างของภาษา XML
1.5.4 ภาษา RDF (Resource Description Framework) - เป็นรูปแบบข้อมูลพื้นฐาน เหมือน ER Model ใช้เพื่อเขียนประโยคทรัพยากรของเว็บโดยใช้ไวยากรณ์ของ XML
1.5.5 RDF Schema - โครงสร้างเตรียมความหมายศัพท์สำหรับ RDF
1.5.6 Ontology Vocabulary - การจัดระเบียบของแนวคิดให้เข้าใจร่วมกันอย่าง ชัดเจน กำหนดให้อยู่ในชั้นสูง เพราะตระหนักถึงความแตกต่างในการสื่อสาร
1.5.7 Logic - ปัจจุบันการเขียนแอพพลิเคชันเน้นวิจัยที่ออนโท โลยีและตรรกะ เพราะออนโทโลยียอมให้ตรรกะเป็น Axiom เพื่อให้เครื่องเข้าใจเหตุผลที่ใช้สารสนเทศได้ ซึ่งสิ่งที่ กล่าวอ้างจะเป็นไปได้หรือไม่ ขึ้นอยู่กับค่าน้ำหนักที่เลือกใช้
1.5.8 Proof - การตรวจสอบความถูกต้องของชุดข้อมูลและตัดสินว่าเป็นคำตอบที่ สอดคล้องกับเซตของข้อมูลที่รู้จักอีกหรือไม่ ปกติใช้โปรแกรมทำ เช่น Racer Pro, Pellet, DIG, Fact + เป็นต้ด แตขันตอนนี้ผู้วิจยังต้องมีส่วนในการ Proofอยู่ว้วย
1.5.9 Trust - ขันตรวจสอบความถูกต้องของเว็บเชิงความหมาย ปัจจุบันไม่ค่อยมี ผู้วิจัยเกี่ยวกับสองขั้นสุดท้ายและในงานวิจัยนี้สนใจขั้นXML RDF ออนโทโลยีและตรรกะส่วนที่ ได้รับการพัฒนาเพิ่มเติมล่าสุดตามภาพ 8 ด้านขวาคือ ชั้นออนโทโลยีที่มีสองทางเลือกคือภาษาออน โทโลยีของเว็บ $(\mathrm{OWL})$ ตามมาตรฐานปัจจุบัน หรือภาษา rule-based
1.5.10 ส่วน DLP เป็น intersection ของ OWL และ Horn logic ที่ใช้ DL เป็น พื้นฐาน ซึ่งมีการใช้แพร่หลายต่อไป นอกจาก OWL-Full, OWL-DL และ OWL-Lite
1.5.11 SPARQL - เป็นทั้งโปร โตคอลและภาษาคิวรี RDF โดย Philip McCarthy จากสถาบันวิจัยไอบีเอ็มกล่าวในงานวิจัยเรื่อง $\operatorname{SPARQL}$ ในปี 2005 ว่า W 3 C ประกาศฉบับร่าง ออกมาว่า SPARQL สร้างขึ้นจากภาษาคิวรีที่มีเช่น $\mathrm{rdfDB}, \mathrm{RDQL}$ และ SeRQL และเพิ่มลักษณะ ใหม่ลงไป ดังในรายงานทางเทคนิคฉบับล่าสุดเมื่อวันที่ 15 มกราคม 2008 ทาง W 3 C ได้ให้ SPARQL เป็นภาษาคิวรี RDF อย่างเป็นทางการ ซึ่งมีงานวิจัยที่ออกมารองรับก่อนเช่น "การแปลง SPARQL เป็นกฎ" ของAxel Polleresในปี 2007 ที่เปรียบเทียบ SPARQLกับ Datalog ส่วนเครื่องมือ เช่น Jena Middleware ได้เพิ่ม ARQ เป็นส่วนจัดการ SPARQL ส่วนคุณสมบัติของ SPARQL ได้รับ การถ่ายทอดจาก SQL แต่ยังไม่สามารถจัดการกับการคิวรีต่อเนื่องและการวนซ้ำได้ดีพอ เนื่องจาก SPARQL เป็นภาษาคิวรีกราฟ RDF ที่การวนซ้ำถูกแปลงเป็นการนับหรือคิดค่าเฉลี่ยแทน
1.6 สถาปัตยกรรมของแอพพลิเคชันเชิงความหมาย


ภาพที่ 3 สถาปัตยกรรมของแอพพลิเคชันดั้งเดิม
ที่มา : Semantic Technology Version 1.2 [Online], accessed 15 July 2008. Available from http://www.Topquadrant.com/documents/TQ04_Semantic_Technology_Briefing.pdf

สถาปัตยกรรมของแอพพลิเคชันดั้งเดิมมักขึ้นอยู่กับ BL (Business Logic) ดังภาพ ที่ แตกต่งกับแอพพลิเคชันเชิงความหมายภาพที่ 4 เมื่อใช้ Knowledge Modet จะเป็น สถาปัตยกรรมแบบเชิงความหมายโดยเพิ่ม SI-Semantic Interface (TopQuadrant 2004: 23) และ เพิ่ม Semantic Engine ในส่วน Middleware


ภาพที่ 4 สถาปัตยกรรมของแอพพลิเคชันเชิงความหมาย
ที่มา : Semantic Technology Version 1.2 [Online], accessed 15 July 2008. Available from http://www.Topquadrant.com/documents/TQ04_Semantic_Technology_Briefing.pdf

## 2. แนวคิดและทฤษฎีที่เกี่ยวข้อง

## 2.1 ความหมายของเครื่องมือค้นหาเว็บไซต์ (Search Engine)

เครื่องมือค้นหาเว็บไซต์ (Search Engine) คือโปรแกรมที่ได้รับการออกแบบมา เพื่อช่วยค้นหาข้อมูลที่เก็บไว้ไนระบบคอมพิวเตอร์เช่น เวริลด์ไวด์เว็บ (World Wide Web - www) ระบบเอื้อให้ผู้ใช้ค้นหาตามหลักของ โปรแกรม ซึ่งส่วนใหญ่ค้นหาโดยใช้คำสำคัญ (Keywords) หรือข้อความสั้นๆ (Phrase) นอกจากนี้ผลการค้นหายังแสดงข้อมูลที่มีความคล้ายคลึงกับคำที่ใช้ ค้นหาด้วย ปัจจุบันเครื่องมือค้นหาเว็บไซต์เป็นคำที่ใช้เรียกเว็บไซต์ที่รวบรวมข้อมูลจากเว็บไซต์ ทั่วไป รวมเป็นฐานข้อมูลเก็บไว้เพื่อให้ผู้ใช้ได้ค้นหาข้อมูลที่ตนต้องการ(ทีมงาน GLOBLET.COM 2549) หรือใช้รียยกเว็บไซต์ที่ค้นหาเว็บไซต์ตามกลุ่ม ทั้งจากรายการ (content) และจากไฮเปอร์ลิงค์ (hyperlinks) ที่ติดต่อกันจากเอกสารหนึ่งไปสู่เอกสารอื่นๆ (Sheth and others 2005: 12L)

เครื่องมือค้นหาเว็บไซต์ที่มีการใช้มากที่สุดคือกูเกิลที่มีจัดลำดับเพจที่เรียกว่า PageRank เป็นหัวใจการค้นหาของกูเกิล ซึ่ง PageRank (PR) เป็นอัลกอริธึมที่กำหนดค่าให้แต่ละ เว็บเพจ แล้วเก็บในฐานข้อมูล ถือเป็นตัววัดประสิทธิภาพของการเชื่อมต่อมาจากเว็บเพจอื่นๆ โดย หาค่าคร่าวๆ ว่ามีโอกาสที่คนจะเข้ามาเจอเว็บเพจนั้นมากน้อยเท่าไร ซึ่งคำนวณจากลิงค์ต่างๆ ทังหมดที่ลิงค์มาหาเว็บนั้นทฤยจี้ PageRank นี้มีที่มาจากวิทยานิพนธ์ที่มหาวิทยาลัยสแตนฟอร์ด ของผู้ก่อตั้งกูเกิลทั้งสองคน คือ บรินและเพจ (Brin and Page 1998) ใดยมีแนวคคิดว่าถ้าเว็บเพจใด ได้รับการอ้างถึงหรือลิงค์มาที่เว็บนั้นมาก ย่อมแสดงว่าเว็บนั้นมีคุณภาพมาก สำหรับค่า PageRank ของเว็บมีค่าตั้งแต่ 1 ถึง 10 สำหรับสูตรในการคำนวณ PageRank ในช่วงการทำวิทยานิพนธ์นี้คือ
$\operatorname{PR}(\mathrm{A})=(1-\mathrm{d})+\mathrm{d}(\mathrm{PR}(\mathrm{T} 1) / \mathrm{C}(\mathrm{T} 1)+\ldots+\mathrm{PR}(\mathrm{Tn}) / \mathrm{C}(\mathrm{Tn}))$
โดยสมมติให้เพจ A ได้รับการลิงค์มาจากเพจ T 1 ถึง Tn แล้ว PageRank ของเพจ A ย่อมได้โอกาสเจอเพจ A มาจาก PageRank ของเพจ T 1 ถึง Tn ด้วย โดยมีพารามิเตอร์ d เป็น Damping Factor ที่มีค่าระหว่าง 0 ถึง 1 ซึ่งปกติตั้งค่า 0.85 ส่วน $\mathrm{C}(\mathrm{A})$ เป็นจำนวนลิงค์ที่ออกไปจาก เพจ A ซึ่งปัจจุบันนี้กูเกิลได้ปรับปรุงและนำอัลกอริธึมแบบต่างๆ มาใช้เพื่อวัด PR ให้มี ประสิทธิภาพมากขึ้น

## 2.2 ข้อจำกัดของเครื่องมือค้นหาเว็บไซต์ ในเว็บแบบดั้งเดิม

2.2.1 ปัญหาหลักคือผลการค้นหาไม่ถูกต้อง เพราะเครื่องไม่เข้าใจความหมาย เนื่องจากโครงสร้างเวิร์ลดไวด์เว็บมีขนาดใหญู่และขยายตัวอยู่เสมอตามจำนวนผู้ใช้อินเตอร์เน็ตที่ เพิ่มขึ้น เทคโนโลยีจึงต้องเก็บข้อมูลมากขึ้นด้วย ยกตัวอย่างในอุตสาหกรรมการท่องเที่ยว มีเว็บ จำนวนมากที่ให้ข้อมูลเกี่ยวกับที่พัก ข่าวสารส่วนใหญ่นำเสนอในรูปภาษาธรรมชาติ ด้วยภาพและ กราฟฟิก แม้ว่าผู้ใช้ที่เป็นมนุษย์จะเข้าใจแต่คอมพิวเตอร์ไม่เข้าใจ เมื่อค้นหาผ่านเครื่องมือค้นหา

เว็บไซต์จึงพบผลลัพธ์จำนวนนับพัน ผู้ใช้ที่เป็นมนุษย์เท่านั้นที่เข้าใจข้อมูล ดังนั้นการค้นหา จัดการ แปลความ และประมวลผลข้อมูลใช้เวลามาก (Lara and others 2001: 1) ส่วนเครื่องเป็นเพียง สื่อกลางเพื่อให้ได้ข้อมูลมา จึงยังใช้เครื่องได้ไม่คุ้มค่า
2.2.2 เครื่องมือค้นหาเว็บไซต์มีข้อจำกัดเรื่องความสามารถของการจัดดัชนีคำ สำคัญที่แปลความหมายไม่ได้ ยกตัวอย่าง คำว่า "buffalo" หมายถึง กระบือ หรือเมืองในรัฐนิวยอร์ก ดังนั้นค้นหาคำว่า "buffalo" คำเดียวไม่สามารถให้คำตอบที่ถูกต้องได้ ยังมีความกำกวมอยู่ และยังมี ประเด็นภาษา 2 ปัจจัยที่ทำให้การค้นหาไม่ถูกต้องนั่นคือ คำ 1 คำมีหลายความหมายและคำหลายคำ มีความหมายเหมือนกัน ซึ่งทำให้เกิดปัญหาว่าข้อมูลที่ได้มาไม่น่าเชื่อถือ (Alesso 2004: 390)
2.2.3 ปัญหาจากการรวบรวมสารสนเทศที่ค้นหามาเข้าด้วยกัน เนื่องจากเดิมข้อมูล อยู่ต่างแหล่งจนนำมาประกอบกันได้ยาก และอาจตีความสิ่งที่ได้มาผิด ซึ่งความแตกต่างของข้อมูลที่ ดึงมาได้จากฐานข้อมูลแบบกระจาย (Stuckenschmidt and Harmelen 2005) แบ่งได้ 3 กลุ่มคือ กลุ่ม ไวยากรณ์ (Syntax) ต่างกัน เช่น รูปแบบข้อมูลที่ต่างกัน กลุ่มโครงสร้าง (Structure) ต่างกันเช่น คำพ้องรูป พ้องความหมาย ตัวแปรเดียวกัน และกลุ่มความหมาย (Semantic) ต่างกันตามข้อความ แวดล้อม
 เดียวกันบนระบบฐานข้อมูลเชิงสัมพ้นธ์ต่ำงแหล่ง การแลกเปล่ยนข่าวสารยังมีบัญหาเพราะความ แตกต่างของโครงสร้างฐานข้อมูล ซึ่งสรุปการออกแบบการรวมข่าวสารจากต่างแหล่งได้ 2 แบบคือ

แบบที่ 1 Top-down ออกแบบตามหลักการของคลังข้อมูล เช่น สมาคมภาครัฐ องค์กรการค้าและบริษัทท่องเที่ยวขนาดใหญ่ที่ใช้ฐานข้อมูลร่วมกัน จึงกำหนดเมตาดาตามาตรฐาน และเมื่อแผนกในองค์กรต้องการใช้ในเรื่องใดก็มาดึงข้อมูลในส่วนที่ต้องการไปใช้ได้

แบบที่ 2 Bottom-up เป็นการออกแบบเมตาดาตาอธิบายรายการของเว็บไซต์ด้วย ออนโทโลยีตามขอบเขตเฉพาะเรื่องและ เมื่อมีหลายเรื่องก็สามารถนำมาเชื่อมกัน รวมถึงสามารถ แลกเปลี่ยนคำอธิบายอย่างเป็นทางการได้ เช่น กรณีการท่องเที่ยว มีเอเจ้นต์อัจฉริยะ สามารถใช้ บริการ เสนอสถานที่เฉพาะแก่นักท่องเที่ยว ผ่านการเข้าเว็บไซต์ต่างๆที่เกี่ยวข้องโดยตรงได้ซึ่งเป็น การใช้ประโยชน์จากเทคโนโลยี เครื่องมือ และกรอบการทำงานของเว็บเชิงความหมาย

สรุปได้ว่า การเข้าถึงข้อมูลแบบเก่าคือ Top-down ที่สร้างเพื่อรองรับการบริหาร โครงการทั้งหมด นั้นมีหลักฐานที่สนับสนุนว่าทำแล้วล้มเหลว ได้แก่บริษัทเบล (Bell Companies) ในทศวรรษ 1980 ซึ่งลงทุนในระบบสารสนเทศมหาศาลจึงเกิดหนี้สินมากมาย สาเหตุคือต้องใช้ ต้นทุนสูงในการรวบรวมเทคนิคต่างๆเข้าด้วยกัน ขาดการสนับสนุนจากผู้บริหารระดับสูง การ สื่อสารและปรับปรุงระบบขนาดใหญ่ล้มเหลว โครงสร้างแผนกเทคโนโลยีสารสนเทศและ

ความสัมพันธ์ของที่อยู่ของคนไม่เหมาะสม ขณะที่ Bottom-up ของเว็บเชิงความหมายนั้นตรงข้าม กัน เนื่องจากทำขอบเขตเฉพาะเรื่อง โครงการที่น่าเชื่อถือได้แก่ EU-funded 'Harmo-TEN' ซึ่งเสนอ การท่องเที่ยวของสหภาพยุโรปซึ่งรายละเอียดอยู่ในวรรณกรรมเรื่อง Harmonise

## 2.3 การค้นหาข้อมูลด้วยเทคโนโลยีเว็บเชิงความหมาย

การค้นหาข้อมูลด้วยเทคโนโลยีเว็บเชิงความหมายมีความแตกต่างจากการค้นหา ข้อมูลด้วยเครื่องมือค้นหาเว็บไซต์ที่พิจารณาการค้นหาด้วยคำสำคัญเป็นหลัก แต่การค้นหาข้อมูล ด้วยเทคโนโลยีเว็บเชิงความหมายต้องมีการจัดระบบและเครื่องมือที่สนับสนุนงานโดยตรง ซึ่งสรุป ขั้นตอนที่ต้องจัดการเพื่อรองรับระบบการค้นข้อมูลด้วยเทคโนโลยีเว็บเชิงความหมายดังนี้
2.3.1 ขั้นตอนการกำหนดโครงสร้างข้อมูลเพื่อทำการอธิบายข้อมูล ในขั้นตอนนี้ พิจารณาภาษาต่างๆ ที่แสดงข้อมูลเชิงความหมาย เพื่อใช้ในการกำหนดโครงสร้างข้อมูลได้ เช่น ภาษา XML RDF และ RDFS เป็นต้น ซึ่งโครงสร้างเพื่ออธิบายข้อมูลประกอบด้วยสองส่วน ได้แก่ การกำหนดคำ (Terms) และการกำหนดคุณสมบัติ (Property) เพื่อใช้อธิบายคุณสมบัติของคำ หรือ กำหนดความสัมพันธ์ระหว่างคำ ซึ่งโครงสร้างข้อมูลที่กำหนดขึ้นจะถูกใช้เพื่อการอธิบายข้อมูล
2.3.2 ขั้นตอนการอธิบายข้อมูล สามารถเลือกใช้ภาษาเชิงความหมายข้างต้นเพื่อ อธิบายข้อมูลที่แสดงคุณลกกณะของทรัพยากร (Resource) ซึ่งใช้เพื่อการสืบค้นโดยเฉพะ ในขณะ ที่ข้อมูลซึ่งเป็นทรัพยากรจริงอาจถูกจัดเก็บอยู่ในระบบเพื่อรอการเข้าถึงหลังจากที่มีการสืบค้น
2.3.3 ขั้นตอนการพัฒนาเครื่องมือในการสืบค้น โดยเลือกเครื่องมือที่เหมาะสมซึ่ง ประเมินผลเชิงความหมายได้ เช่นหากอธิบายข้อมูลด้วย RDF ก็จะต้องใช้เครื่องมือที่คิวรี RDF ได้

จากขั้นตอนดังกล่าวสรุปได้ว่า การค้นหาเอกสารด้วยเทค โนโลยีเว็บเชิง ความหมายมีการทำงานที่ซับซ้อน เนื่องจากต้องจัดเตรียม โครงสร้างข้อมูลเพื่อใช้ในการอธิบาย ข้อมูลที่นำมาใช้ในการพิจารณาการสืบค้นโดยเฉพาะ และจัดการเครื่องมือที่สามารถประมวลผล ภาษาเชิงความหมายได้อย่างอัตโนมัติ นอกจากนี้การค้นหาข้อมูลด้วยเทคโนโลยีเว็บเชิงความหมาย คือการค้นหาข้อมูลโดยพิจารณาความสัมพันธ์ของข้อมูลเป็นหลัก ดังนั้นจึงสามารถให้ผลลัพธ์ที่มี ความแม่นยำมากกว่าการค้นหาด้วยคีย์เวิร์ดและสามารถทำให้ค้นหาข้อมูลได้อัตโนมัติโดยอาศัยการ กรองจากโปรแกรมซึ่งช่วยลดการทำงานของมนุษย์ที่ต้องพิจารณาผลลัพธ์การค้นหาเพื่อหาข้อมูลที่ ต้องการจริงๆ เช่นค้นหาข้อมูลด้วยเสิร์ชเอ็นจิ้นเป็นต้น

## 2.4 ประเภทของ Semantic Web Search Engines

2.4.1 Ontology Search Engines แบ่งเป็น
2.4.1.1 Ontology Meta Search Engines คือการหาเอกสารเว็บเชิง ความหมายโดยใช้ออนโทโลยี การค้นหาแบ่งเป็น 2 ขั้นตอน คือ หาโดยใช้ชื่อไฟล์ หรือประเภท

ไฟล์ เช่น rdf, owl, rss หรือค้นหาโดยป้าย โดยการแปลงทั้งเอกสารและคิวรีเป็นรูปแบบอื่นที่เครื่อง มือค้นหาเร็บไซต์อ่านได้ แล้วแสดงผลลัพธ์ที่เบราเซอร์อ่านได้และค้นหาออนโทโลยีที่สำคัญได้
2.4.1.2 Crawler Based Ontology Search Engines คล้ายกับ 2.8.1 ต่างกันที่ มีครอวเลอร์หาเอกสารเชิงความหมายจากเว็บ ตั้งดัชนีแล้วดึงเมตาดาตาที่จำเป็นออกมา บางครั้งจึง พบคลาสหรือพร็อพเพอร์ตี้พิเศษหรือแม้แต่ข้อมูลอย่าง ABox ได้ หรือดึงโครงสร้างกราฟเอกสาร เชิงความหมายของเว็บได้ แต่การแสดงผลลัพธ์ไม่สวยงาม เพราะปัญหาสำคัญของเครื่องมือ ประเภทนี้คือการเตรียมการเก็บข้อมูลให้เป็นมาตรฐานได้อย่างไร

### 2.4.2 Semantic Search Engines แบ่งเป็น

2.4.2.1 Context Based Search Engines จุดมุ่งหมายของเครื่องมือคือพัฒนา ประสิทธิภาพของเครื่องมือค้นหาเว็บไซต์แบบเก่าโดยเฉพาะค่าความแม่นยำและความระลึก จึงต้อง ทำความเข้าใจไวยากรณ์และคิวรี ส่วนที่สำคัญคือการใส่คำอธิบายเพื่อสร้างเมตาดาตาเว็บที่เก็บมา ในระบบและสร้างเมตาดาตาเพื่อให้ผู้ใช้คิวรีเพื่อตรวจสอบไวยากรณ์ หลังจากการดึงค่า (retrieval) แล้วจะจับคู่ RDF Graph เพื่อพัฒนาคุณภาพของผลลัพธ์ เครื่องมือประเภทนี้จึงเป็นเครื่องมือที่ใช้ได้ จริงและเป็นเครื่องมือค้นหาเว็บไซต์รุ่นต่อไป เพราะสามารถพัฒนาโดยใช้การวัดประสิทธิภาพและ ทดสอบการเก็บข้อมูลแบบเดิมได้ ปัญูหาที่นิยมถาม เช่น รวบรวมสารสนเทศเบบอัตโนมัต็เป็นหํวขอเฉฉพาะ การทำงานที่โดดเด่นคือ การใช้เมตาดาตาจากภายนอก การทำงานคือใช้เครื่องมือค้นหาเว็บไซต์ค้นหาแล้วแสดงข่าวสาร เพิ่มเติมไว้ข้างๆ คำตอบที่ได้ถือว่าเป็น "like" ระดับใหญู่มาก อาจมาจากเว็บทั้งหมดก็ได้ อาจเปรียบ ได้ว่วาคล้ายกับการใช้ 2.4.2.1 หลายเครื่องมาช่วยกันทำงาน

ตารางที่ 4 สรุปประเภทของ Semantic Web Search Engines และชื่อแอพพลิเคชัน

| Ontology Search Engines |  | Semantic Search Engines |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
| Swangler, | Swoogle, | OWLIR, QuizRDF, InWiss, Corese, | W3C | SemDis, |  |
| OntoSearch | Ontokhoj | Infofox, SHOE, DOSE, SERSE, ALVIS, <br> OntoWeb, Score, Matching RDF Graph, | Semantic <br> Search, <br> International Affairs Portal | Search+ <br> Inference |  |

ที่มา: Kyumars Sheykh Esmaili and Hassan Abolhassani, "A Categorization Scheme for Semantic Web Search Engines," in Proceedings of the IEEE International Conference on Computer Systems and Applications (n.p. : IEEE Computer Society, 2006), 177.
2.4.2.3 Semantic Association Discovery Engines เป็นแอพพลิเคชัน สำหรับหาข้อมูลปริมาณมาก จุดมุ่งหมายคือหาความสัมพันธ์เชิงความหมายระหว่างเทอมที่ใส่เข้า ไปสองเทอมแล้วจัดลำดับผลลัพธ์ตามระยะห่างของความหมาย ทำงานได้ดีบนฐานความรู้ ออนโทโลยีขั้นสูงเช่น WordNet หรือ OpenCyc สามารถนำมาใช้ประเมินเครื่องมือประเภทนี้ได้

## 3. ตัวอย่างงานวิจัยเกี่ยวกับเว็บเชิงความหมาย

### 3.1 Swoogle

ส่วนของสถาปัตยกรรม ประกอบด้วยฐานข้อมูลที่เก็บเมตาดาตาของเว็บเชิงความ หมาย เว็บครอเลอร์ 2 ตัวที่แยกกันค้นหาเว็บ เพื่อคำนวณหาความสัมพันธ์ระหว่างข้อมูลเว็บ จัด ดัชนีและเครื่องมือดึงข้อมูลและหน้าจอผู้ใช้ที่เรียบง่ายเพื่อใช้คิวรีและ API ของเอเจ้นต์หรือเว็บ เซอร์วิสเพื่อใช้หาบริการที่มีประโยชน์ ส่วนการช่วยผู้ใช้นั้น Swoogle รวบรวมเว็บเชิงความ หมายที่ กระจายอยู่บนเว็บและคิวรี ตามคลาสและพร็อพเพอร์ตี้ โดยการเก็บเมตาดาตาแบบเว็บเชิง ความหมายตามพร็อพเพอร์ตี้ที่สนใจ เช่น การเชื่อมเว็บเข้าด้วยกัน การอ้างถึงและปรับออนโท โลยี จากภายนอก และจัดระดับโดยเลือกออนโท โลยีตามความสำคัญของเอกสาร ซึ่งออกแบบระบบ แบบขยายตัวเพื่อจัดการเอกสารนับล้านและให้คิวรีเชิงความหมายได้


ภาพที่ 5 หน้าจอ Swoogle รุ่น 2007 ในปัจจุบัน
ที่มา : Swoogle Semantic Web Search 2007 [Online], accessed 19 July 2008. Available from http://swoogle.umbc.edu


ภาพที่ 6 สถาปัตยกรรมของ Swoogle
ที่มา : Li Ding and others, "Swoogle: a search and metadata engine for the semantic web," in Proceedings of the thirteenth ACM international conference on Information and knowledge management (Washington D.C.: ACM, 2004), 653.

## Swoogle's Statistics of the Semantic Web

| admin_dt $](O$ | $2011-05-0700,03.09$ |  |
| :--- | :--- | :--- |
| url_total | $10,887,693$ | Datetime Watched |
| url_pinged | $5,625,497$ | Number of URLs being discovered |
| total_swd | $3,551,920$ | Number of Semantic Web Documents (regardless of embedded or <br> containing some errors) be comfirmed. |
| total_swd_strict | $1,914,356$ | Number of error-free pure Sematic Web Documents |
| total_swd_embed | $1,273,037$ | Number of documents (except SWDs, PDF, and JPEG) embedding <br> Semantic Web Data |
| triple_total | $1,111,102,803$ | Number of triples could be parsed from all Semantic Web Documents |

ภาพที่ 7 สถิติของเว็บเชิงความหมายที่ Swoogle รวบรวมอยู่ในหัวข้อ Swoogle Today ที่มา: Swoogle's Statistics of the Semantic Web [Online], accessed 7 May 2011. Available from http://swoogle.umbc.edu/index.php?option=com_swoogle_stats

### 3.2 Harmonise

Harmo-TEN (Dell'Erbra and others 2005: 1-39) หรือ Harmonise เป็นชุมชน ออนไลน์ขนาดใหญ่ของชาวยุโรป สร้างเพื่อสนับสนุนสารสนเทศการท่องเที่ยวที่ผ่านการปรับและ ใช้ 'ออนโทโลยีการท่องเที่ยวอย่างน้อยที่สุด'โครงการ Harmo-TEN มีการเข้าถึงสะดวก การ วางแผนแบบเรียบง่ายระหว่างรูปแบบข้อมูลที่อยู่บนมาตรฐานต่างๆ (หรือไม่มีเลย) ดังในส่วนของ การทำงานทีม Harmo-TEN วิเคราะห์ข้อมูลการท่องเที่ยวมาตรฐานที่มีอยู่และพบว่า มาตรฐาน

ข้อมูลนักท่องเที่ยวสัมพันธ์มีมากกว่า 40 มาตรฐาน รูปแบบการเข้าถึงคือภาษาและระดับแตกต่าง กันมากและมีส่วนที่สอดคล้องกันเช่น OTA และรูปแบบ IFITT RMSIG แล้วยังมีการเหลื่อมและ ขัดแย้งกัน นอกจากนี้มาตรฐานเทคโนโลยีสารสนเทศการท่องเที่ยวในปัจจุบันส่วนใหญ่อยู่ใน ระดับต่ำและนั่นทำให้ "การประสานงานควรเป็นอิสระจากการแก้ปัญหาทางเทคนิคแล้วแทนที่ด้วย ระดับแนวคิดมากกว่า"

กระบวนการประสานงานกัน (Harmonisation) มี 2 ขั้นตอนดังนี้ ขั้นที่ 1 การปรับ ข้อมูล มีการวางแผนเชิงความหมายระหว่างข้อมูลของผู้ใช้และแนวคิดในออนโท โลยี โดยทำงาน เมื่อบริษัทเพิ่มนักท่องเที่ยวใหม่เข้าสู่เครือข่าย Harmonise ผลลัพธ์เป็นเซตของกฎของจำนวนผู้เข้า มาใหม่ที่ใช้ระหว่างขั้นตอนการทำงานร่วมกัน ขั้นที่ 2 ขั้นการทำงานร่วมกัน ทำหน้าที่แปลง รูปแบบข้อมูลของผู้ไช้โดยแสดงให้เหมาะกับการแลกเปลี่ยนกับผู้ใช้อื่นๆ ในเครือข่าย Harmonise ที่อยู่บนกฎตรวจสอบข้อมูลชุดนั้น


ภาพที่ 8 ขั้นตอนการรวมกันของHarmo-TEN
ที่มา : M. Dell'Erbra and others, "Exploiting semantic Web technologies for harmonizing emarkets," Journal of Information Technology and Tourism 7,3 (2005): 211.

## 3.4 ออนโทโลยี

การแทนความรู้ (Knowledge Representation) เช่น ออนโทโลยีจำเป็นต้องใช้ ภาษาการแทนที่เหมาะสม จากตารางที่ 5 แสดงความแตกต่างระหว่าง Relational database, XML, $\mathrm{RDF}, \mathrm{OWL}$ ซึ่งมีคุณสมบัตีที่นำไปใช้ประโยชน์ได้แตกต่างกัน (อัศนีย์ ก่อตระกูล 2550: 6-31-6-34)

ตารางที่ 5 ความแตกต่างระหว่าง Relational database, XML, RDF, OWL

| Properties | RDBMS | XML | RDF | OWL |
| :--- | :--- | :--- | :--- | :--- |
| Characteristic of Storing | Tuple | Mark up | Triple | Triple |
| Structure | Fix | Flexible | Flexible | Flexible |
| Exchange data (share) | Can not exchange | Enable | Enable | Enable |
| Logical reasoning | Disable | Disable | Enable | Enable(better) |
| Resource references | Local database | Disable | URI | URI |

ที่มา : อัศนีย์ ก่อตระกูล, การพัฒนาระบบสกัดข้อสนเทศและความรู้จากเอกสารไร้โครงสร้าง ภาษาไทย (ม.ป.ท., 2550), 6-31.

ตารางที่ 6 ตัวอย่างโครงสร้างการจัดเก็บข้อมูลแบบทัพเพิล (Tuple)


อธิบายตารางที่ 6 ความแตกต่างระหว่างทัพเพิลและทริพเพิล มีดังนี้ ทัพเพิล เป็น ลำดับของค่าที่ใส่ในโครงสร้างที่ออกแบบตามเขตข้อมูลที่กำหนดจากตารางที่ 6 ทัพเพิล ("Dussadee", "063301245", "dus@hotmail.com", "Nontaburi") นั้นแสดงชื่อ เบอร์โทรศัพท์ อีเมล์ และเมือง ส่วนทริพเพิลเป็นโครงสร้างข้อมูลแบบ RDF ซึ่งอยู่ในรูปแบบ \{subject, predicate,object\} หรือ \{subject, property, value\} โดย Subject จะบอกแหล่งที่อยู่ของข้อมูลและข้อมูลระบุเฉพาะอื่นๆ เช่น "http://www.ku.ac.th", "g4105026@ku.ac.th" ส่วน Predicate อธิบายถึงความสัมพันธ์ระหว่าง Subject กับ Object เช่น "rdf:type", "rdf:resource", "rdf:about" สำหรับ Object คือข้อมูลหรือค่าที่ เรากำหนดเช่น literal (string) เป็นต้น

ตารางที่ 7 การเปรียบเทียบมุมมองระหว่างฐานข้อมูลและฐานความรู้ของเว็บเชิงความหมาย

| Feature | Relational Database | Knowledgebase |
| :--- | :--- | :--- |
| Structure | Schema | Ontology Statements |
| Data | Rows (tuple) | Instance Statements (triple) |
| Storing | Tables | URI, RDF |
| Administration Language | DDL (Create Table t-name ...) | Ontology Statements(RDFS,OWL) |
| Query Language | SQL(Select * from ...) | SPARQL |
| Relationships | Foreign Keys | Multidimentional |
| Logic | External of database/triggers | Formal logic statements |
| Uniqueness | Key for table | URI |

จากความรูข้างต้นเราสามารถสรุปมุมมองระหว่างฐานข้อมูลเยละ ฐานความรู้ของเว็บเชิงความหมายได้ดังตารางที่ 7
3.4.1 ขั้นตอนการพัฒนาออนโทโลยี

ขั้นตอนการพัฒนาออนโทโลยี (Rector 2008) อธิบายรายละเอียดได้ดังนี้


ภาพที่ 9 ขั้นตอนการพัฒนาออนโทโลยี
ที่มา : Roopa Jakkilinki, Nalin Sharda, and Imran Ahmad, Ontology-Based Intelligent Tourism Information Systems: An overview of Development Methodology and Applications [Online], accessed 19 July 2008. Available from http://140.159.30.23/TES2005/images/roopa.pdf
3.4.1.1 กำหนดวัตถุประสงค์ เช่น การท่องเที่ยว ที่พักแรม สถานที่ตั้ง
3.4.1.2 ดึงความรู้ที่มีทั้งแบบทางการและกึ่งทางการ แล้วจึงรวบรวมเทอม สร้างเทอม ถ่ายทอดข้อความออกมาเป็นคอนเซปต์ และสร้างไดอะแกรม
3.4.1.3 แก้ไขความต้องการและออกแบบการทดสอบ
3.4.1.4 สร้างและพัฒนาเช่นนอร์มัลไลซ์แล้วตรวจดูว่าคลาสผิดหรือไม่
3.4.1.5 ประเมินผลและวัดคุณภาพของออนโทโลยีที่สร้าง
3.4.1.6 ทดลองใช้และพัฒนาให้เหมาะสม

นำขั้นตอนการพัฒนาออนโทโลยีเหล่านี้มาใช้เป็นขั้นตอนการกำหนดออน-
โท โลยีในภาพที่ 9 จากนั้นจึงนำมาใช้ร่วมกับการเขียนโปรแกรมตามลำดับ

### 3.4.2 เครื่องมือที่ใช้พัฒนาออนโทโลยี

วิธีการสร้างออนโทโลยีของเว็บเชิงความหมายสามารถสร้างได้หลายวิธี สามารถสรุปได้ดังนี้
3.4.2.1 สร้างโดยการเขียนโค้ดด้วย OWL-DL โดยตรง เหมาะสำหรับผู้ที่ ต้องการจัดกลุ่มของกฎเองและมีความรู้ในกฎของ OWL-DL เป็นอย่างดี ซึ่งเครื่องมือที่ใช้เขียน โปรแกรมอาจเป็น Rich Text Editor ทั่วไปเช่น Notepad หรือ Editplus ดังภาพที่ 10 จากนั้นบันทึก เป็น OWD แล้วจึงนำไปใช้ต่อไป ซึ่งรายละเอียดของกฎ $\mathrm{OW}-\mathrm{DL}$ เป็นดังภาคผนวกฉ ฉกร ออกแบบออนโทโลยีโดยละเอียด

```
---+----1----+----2----+-----3----+----4----+-----------+-----6----------------
<?xml version="1.0"?>
<rdf:RDF
            xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
            xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"
            xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#"
            xmlns="http://www.owl-ontologies.com/HHOntoTourism11.owl#"
            xmlns:p2="http://jena.hpl.hp.com/ARQ/property#"
            xmlns:owl="http://www.w3.org/2002/07/owl#"
            xmlns:xsd="http://www.w3.org/2001/xMLSchema#"
            xmlns:p1="http://www.w3.org/2003/11/swrl#"
            xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
            xml:base="http://www.owl-ontologies.com/HHOntoTourism11.owl">
            <owl:Ontology rdf:about=""/>
            <owl:Class rdf:ID="Tricycle">
            <rdfs:subClassOf>
                <owl:Class rdf:ID="Transportation"/>
            </rdfs:subClassOf>
        </owl:Class>
        <owl:Class rdf:ID="Triathlete">
            <rdfs:subclassOf>
                <owl:Class rdf:ID="Sport"/>
            </rdfs:subClassOf>
|N <n..l.Nininin+mith\
ภาพที่ 10 การสร้าง OWL โดยใช้โปรแกรม Editplus
```

3.4.2.2 สร้างโดยเครื่องมือแก้ไขออนโท โลยี Protégé ดังภาพที่ 10 ผู้ใช้ สามารถสร้างคลาส สับคลาส คุณสมบัติ เชื่อมคุณสมบัติเป็นความสัมพันธ์ เขียนข้อบังคับต่างๆ ด้วยไวยากรณ์ OWL-DL 3 มุมมองคือมุมมอง DLSyntxClassDisplay มุมมองManchesterOWLSyntax และมุมมอง CompactOWLClassDisplay และจะมีการตั้งหน้าจอเพื่อเพิ่มข้อมูลรายละเอียด ของกฎ OWL-DL ซึ่งวิธีการนี้เหมาะสมกับผู้ใช้ที่มีความรู้เรื่องการออกแบบออนโทโลยีในระดับ หนึ่ง สามารถดูรายละเอียดการใช้โปรแกรมได้ดังภาคผนวก จ การใช้งานโปรแกรม Protégé ใน งานวิจัย
3.4.2.3 สร้างโดยใช้แอพพลิเคชันหรือซอฟต์แวร์ที่พัตนาขึ้นเอง ซึ่งวิธีนี้ เหมาะสำหรับผู้ใช้ที่ต้องการเพิ่มข้อมูลอินสแตนซ์เองในโดเมนเฉพาะด้าน ซึ่งในงานวิจัยนี้ได้มีการ พัฒนาส่วนนี้ขึ้นมา
3.4.2.4 การสร้างข้อมูลแบบอัตโนมัติโดยใช้หลักการของเว็บครอล-เลอร์ เช่นการใช้ไฟล์โรบอท เก็บข้อมูลตามเว็บซึ่งมีการเขียนส่วนอ่านไฟล์ robot.txt และส่วนตัดคำ การเลือกใช้เครื่องมือพัฒนาออนโทโลยีแบบ 3.4.2.2 มีข้อดีคือโปรแกรมมี อินเตอร์เฟสช่วยผู้ใช้พัฒนาออนโทโลยีได้ตามต้องการ ช่วยลดาลวและอำนวยความสะดวกาในการ เลือกเครื่องมือมีความเสี่ยงเรื่องต้นทุน เวลาและทรัพยากร นักวิจัยจึ่งทำการประเมินผลเครื่องมือ พัฒนาออนโทโลยีเพื่อลดความเสี่ยงดังกล่าว

ตัวอย่างการสำรวจอาทิในปี 2002 Denny สำรวจว่าแอพพลิเคชันส่วนใหญ่ ใช้ออนโทโลยีในโดเมนเฉพาะ และการสร้างออนโทโลยีโดยไม่คำนึงถึงรายการที่ต้องการ

การสรุปการสำรวจโปรแกรมออนโทโลยี (Damjanovic and others 2004: 44) การสำรวจมีเป้าหมายคือ อธิบายข้อมูลทั่วไปของเครื่องมือ เช่น เกี่ยวกับนักพัฒนา รุ่นที่ออกมา และประโยชน์ อธิบายสถาปัตยกรรมซอฟต์แวร์และการประเมินผลข้อมูล อธิบายว่าสามารถทำงาน ร่วมกับเครื่องมือพัฒนาออนโท โลยีและภาษาอื่นๆ ได้ อธิบายรูปแบบความรู้ที่ใช้ อธิบายถึงบริการ ของเครื่องมือ ซึ่ง Denny สำรวจเฉพาะข้อนี้ และอธิบายการใช้งานของเครื่องมือชนิดนั้น

นอกจากนี้ยังทดสอบเครื่องมือที่นิยมใช้หลายชนิด คือ KAON 1.2.7, OilEd 3.5, Ontostudio 1.4, Protégé 3.2, WebOnto 2.3 และ Swoop 2.3 แล้วสรุปได้ว่าเครื่องมือพัฒนาออน โทโลยีที่โดดเด่นที่สุดคือ Protégé


ภาพที่ 11 การสร้างโดยเครื่องมือแกี้ไขออนโโท โลยี Protégé 3.3.1,

ต่อมาได้มีการนำเครื่องมือ Protégé 2000, Ontolingua, Ontordit มาทดสอบ เปรียบเทียบด้าน Usability และ Ontological aspect แล้วพบว่า Protégé เหนือกว่าทั้งสองด้าน (Jakkilinki and others 2005)

สรุปได้ว่า Protégé เป็นเครื่องมือแก้ไขออนโทโลยีที่ใช้กันอย่างแพร่หลาย ในปัจจุบัน โดยผู้ใช้สามารถกำหนดและแก้ไขออนโทโลยีทั้งคลาส พร้อพเพอร์ตี้ความสัมพันธ์ และ ตัวแปรแบบโครงสร้างต้นไม้ สามารถส่งออกออนโท โลยีในรูปแบบ $\operatorname{RDF}(\mathrm{S})$, และ XML Schema ทั้งนี้ Protégé ยังมีฟังก์ชันให้เลือกใช้มากมายและสนับสนุน OWL นอกจากนี้ยังมีปลั๊กอินที่มี ประโยชน์มากมาย เช่นแท็บ visualisation เรียกใช้ OWLViz ให้มองออนโท โลยีเป็นกราฟและ ส่งออกเป็นไฟล์รูปภาพได้ และมีแท็บคิวรีภาษา SPARQL ซึ่งเป็นภาษาคิวรีและโปร โตคอลพื้นฐาน RDF ที่ได้รับการแนะนำจาก W 3 C อย่างเป็นทางการเมื่อวันที่ 15 มกราคม ค.ศ. 2008

## 4. การท่องเที่ยว

## 4.1 องค์ประกอบของอุตสาหกรรมการท่องเที่ยว

องค์ประกอบของอุตสาหกรรมการท่องเที่ยวที่สำคัญ (ธนกฤต สังข์เฉย 2550:50)
มีดังนี้
4.1.1 นักท่องเที่ยว เป็นองค์ประกอบที่สำคัญที่สุด คือเปรียบเสมือนอุปสงค์ของ การท่องเที่ยว ทำให้อุตสาหกรรมการท่องเที่ยวต้องตอบสนองให้นักท่องเที่ยวได้รับความพึงพอใจ ทรัพยากรการท่องเที่ยว เป็นวัตถุดิบที่เกิดขึ้นโดยธรรมชาติและสิ่งมีคุณค่าที่มนุษย์สร้างขึ้น รวมถึง เหตุการณ์สำคัญ ที่กลายเป็นสิ่งที่มีคุณค่าต่อการท่องเที่ยว สามารถดึงดูดใจนักท่องเที่ยวเดินทางมา เยือน ถือว่าเป็นจุดหมายปลายทางของนักท่องเที่ยว
4.1.2 ธุรกิจในอุตสาหกรรมการท่องเที่ยว เข้ามามีบทบาทในการบริการ อำนวย ความสะดวกและตอบสนองความต้องการแก่นักท่องเที่ยวในระหว่างการท่องเที่ยว ประกอบด้วย ธุรกิจที่พักแรม ธุรกิจนำเที่ยว ธุรกิจคมนาคมขนส่ง ธุรกิจอาหารและเครื่องดื่ม ธุรกิจจำหน่ายสินค้า ที่ระลึก และอื่นๆ ที่เกี่ยวข้อง ส่วนองค์ประกอบสนับสนุนแก่นักท่องเที่ยวอันเป็นส่วนจูงใจแก่ นักท่องเที่ยวนั่นคือ ข้อมูลค่าวสารทางการท่องเที่ยว ความปลอดภัยและการอำนวยความสะดวกใน การเข้าเมื่อง โครงสร้างสาฐารณูปโภคพื้นฐาน และการสนับสนุนจากหน่วยงานภาครัฐเธะะอกชน


ภาพที่ 12 องค์ประกอบของอุตสาหกรรมการท่องเที่ยว ที่มา : ธนกฤต สังข์เฉย, อุตสาหกรรมการท่องเที่ยวและการบริการ (นครปฐูม : โรงพิมพ์มหาวิทยาลัยศิลปากร วิทยาเขตพระราชวังสนามจันทร์, 2550), 50 .

## 4.2 เทคโนโลยีสารสนเทศและการท่องเที่ยว

ขั้นตอนการใช้งานสารสนเทศการท่องเที่ยว เริ่มจากนักท่องเที่ยวมักค้นหาข้อมูล ทางอินเตอร์เน็ตก่อนการท่องเที่ยว เพื่อหาบริการการท่องเที่ยว ในส่วนของตัวแทนบริษัทนำเที่ยวมี หน้าที่หาข่าวสารที่รอบด้านให้พร้อมที่สุดเพื่อนำเสนอแก่นักท่องเที่ยวที่เข้ามาค้นหา ดังภาพที่ 13 สาเหตุสัาคัญูที่ทำให้เทคโนโลยีสารสนเทศมีความสัมพันธ์กับการท่องเที่ยวได้แก่
4.2.1 อุตสาหกรรมการท่องเที่ยวประกอบด้วยสารสนเทศมากมายหลายประเภท หลายขนาดเนื่องจากผลิตภัณฑ์เป็นสินค้าและบริการที่จับต้องไม่ได้หรือนำมาแสดงให้ดูในจุดขาย ไม่ได้ประกอบกับโดยทั่วไปมักดำเนินการค้นหาข้อมูลล่วงหน้าก่อนการท่องเที่ยว ผู้ประกอบการ ท่องเที่ยวจึงงำเป็นต้องมีการแนะนำสินค้าและบริการด้วยสื่อที่ประกอบไปด้วยข้อมูล่าวสาร ซึ่งอยู่ ในรูปของสื่อสิ่งพิมพ์หรือสื่ออิเล็กทรอนิกส์ที่สามารถเห็นภาพเคลื่อนไหวหรือได้ยินเสียงประกอบ 4.2.2 อุตสาหกรรมการท่องเที่ยวมีการติดต่อทั่วโลก เทคโนโลยีสารสนเทศช่วย จัดการและให้บริการสอดคล้องกับความต้องการนักท่องเที่ยวทั่วโลกได้อย่างมีประสิทธิภาพยิ่งขึ้น
4.2.3 อุตสาหกรรมท่องเที่ยวมีการนำระบบคอมพิวเตอร์มาช่วยดำนินการเป็น จำนวนมาก ซึ่งผู้ใช้มีการเชื่อมโยงเป็นครือข่ายระหว่างธุรกิจแต่ละประเภท ประมาณว่าร้อยละ 33-
 เช่น Pauline Sheldon กล่าว่า่า"รารสนเทศคือเส้นชีวิตของอุตสาหกรรมท่องเที่ยว" (มสธ. 2545) เราสามารถสรุปขั้นตอนการใช้งานเทคโนโลยีสารสนเทศการท่องเที่ยวเป็นวงจรชีวิตของ นักท่องเที่ยวที่สัมพันธ์กับผู้ให้บริการสารสนเทศด้านการท่องเที่ยวได้ดังภาพที่ 13


ภาพที่ 13 วงจรนักท่องเที่ยว
ที่มา: Hannes Werthner, "Intelligent Systems in Travel and Tourism," in Proceeding of the 18th International Joint Conference on Artificial Intelligence (Acapulco: Morgan Kaufmann Publishers Inc., 2003): 1622.

## 4.3 ข้อจำกัดเทคโนโลยีสารสนเทศการท่องเที่ยว

เนื่องจากอินเตอร์เน็ตขาดโครงสร้างอธิบายในส่วนข้อจำกัดของเครื่องมือค้นหา เว็บไซต์การขาดโครงสร้างที่นี้หมายถึง ข่าวสารการท่องเที่ยวจำนวนมากมีความสำคัญต่อมนุษย์ ไม่ใช่เครื่อง ดังนั้นความสำเร็จของการจัดการบนระบบที่ต่างกันขึ้นออู่กับความสามารถของผู้พัฒนา ซอฟต์แวร์แต่ละคนเพื่อตั้งโปรแกรมระบบให้ทำงานตามที่ต้องการ ความสามารถของ โปรแกรมเมอร์มีข้อจำกัดที่การจัดการซอฟต์แวร์และโครงสร้างข้อมูล ปัจจุบันนี้มีข้อจำกัดที่การ รวมข่าวสารการท่องเที่ยวนั้นยาก ต้นทุนสูง และใช้เวลานาน ดังนั้นการแก้ปัญหาเรื่องข่าวสารการ ท่องเที่ยวที่ดีกว่าคือใช้เว็บเชิงความหมายในรูปแบบ Bottom-up ซึ่งมีข้อดีและข้อจำกัดที่ต้องมีการ วิจัยกันต่อไป

## 4.4 ตัวอย่างเทคโนโลยีสารสนเทศการท่องเที่ยวอำเภอหัวหินในปัจจุบัน

ปัจจุบันเทคโนโลยีสารสนเทศของอำเภอหัวหินแบ่งตามชนิดที่เผยแพร่ได้ดังนี้
4.4.1 ข่าวสารจากบล็อก ส่วนนี้เป็นข้อมูลเหตุการณ์ที่เกิดขึ้นในอำเภอหัวหินที่ ผู้เขียนประสบโดยตรงหรือค้นหามาเผยแพร่อีกที
4.4.2 เว็บจากหน่วยงานราชการ เว็บจากเทศบาลหัวหิน การท่องเที่ยวแห่ง ไ7クロงระเทศไทย
4.4.3 เว็บจากองค์กร ธุรกิจ เว็บเผยแพร์ที่พักอาศัยและะปิดจองที่พักแก่ นักท่องเที่ยว โดยเจ้าหน้าที่เทศบาลได้ให้ความรู้ว่าเว็บจากบริษัทเหล่านี้มักให้ข้อมูลมากกว่าข้อมูล พื้นฐานเพื่อโฆษณาที่พักของบริษัทตนเองตัวอย่างเช่นการใส่ดาวเกินความจริงในที่พักบางที่เป็นต้น
4.4.4 เว็บเผยแพร่ข่าวสารอื่นๆ เช่นสถานที่ท่องเที่ยวตามธรรมชาติ สภาพ ภูมิอากาศ สถานที่ขายสินค้า เป็นต้น

ข้อจำกัดคือ ข่าวสารอยู่กันอย่างกระจัดกระจายทำให้การรวบรวมข่าวสารต่างๆ เข้าด้วยกันเป็นไปอย่างยากลำบาก ข่าวสารบางแหล่งที่ได้รับไม่ครบถ้วนและขาดความน่าเชื่อถือ

## 4.5 สาเหตุที่วิจัยเว็บการท่องเที่ยวอำเภอหัวหิน

เนื่องจากแหล่งท่องเที่ยวในอำเภอหัวหินเป็นที่นิยมมากขึ้น จากข้อมูลแหล่ง ท่องเที่ยวที่ได้รับความนิยมของชาวต่างชาติ ปี พ.ศ. 2548 จากการท่องเที่ยวแห่งประเทศไทย (ธนกฤต สังข์เฉย $2550: 318$ ) พบว่าอำเภอหัวหินได้รับการจัดอันดับว่ามีชาวต่างชาติมาท่องเที่ยว เพิ่มขึ้นทั้งจำนวนนักท่องเที่ยวและรายได้เป็นอันดับที่ 8 ของประเทศ เนื่องจากชายฝั่งด้านทะเลอัน ดามันประสบวิกฤติจากคลื่นยักษ์สึนามิ ทำให้นักท่องเที่ยวจากจังหวัดภูเก็ต กระบี่ และพังงาลดลง แต่พัทยา เกาะสมุยและหัวหินที่เป็นชายฝั่งด้านอ่าวไทยมีนักท่องเที่ยวเพิ่มขึ้นแทน สรุปสถานภาพ การท่องเที่ยว อ.หัวหินโดยใช้การวิเคราะห์สภาพของอุตสาหกรรมการท่องเที่ยวตาม SWOT ดังนี้
4.5.1 จุดแข็ง (STRENGTHS)
4.5.1.1 เป็นสถานที่จุดหมายปลายทางที่เป็นที่รูจกักระดับหนึ่ง
4.5.1.2 ประกอบด้วยแหล่งท่องเที่ยวหลากหลายทั้งทางธรรมชาติช่นทะเล น้ำตก และสิ่งที่มนุษย์สร้างขึ้น เช่น จุดชมวิว โบราณสถาน สวนสนุก เป็นต้น
4.5.1.3 อัธยาศัยไมตรีที่เป็นมิตรของชาวหัวหิน
4.5.1.4 ไม่มีปัญหาการก่อการร้าย
4.5.2 จุดอ่อน (WEAKNESS)
4.5.2.1 สิ่งอำนวยความสะดวกและความปลอดภัยไม่ได้มาตรฐูานสากล
4.5.2.2 ถนนและตัวเมืองแคบ ขาคที่จอครถ
4.5.2.3 มีการหลอกลวงเอาเปรียบนักท่องเที่ยว

### 4.5.3 โอกาส (OPPERTUNITIES)

4.5.3.1 การท่องเที่ยว อ.หัวหินได้รับความนิยมสูงมากจากอินเตอร์เน็ต
4.5.3.2 อยู่ใกล้กรุงเทพมหานคร การเดินทางจากเมืองหลวงสะดวก
4.5.3.3 ที่พักแรมขยายตัวมากขึ้น สามารถรองรับนักท่องเที่ยวได้มาก เกิด
4.5.4 อุปสรรค (THREAT)
4.5.4.1 มีการแข่งขันทางการตลาดด้านการท่องเที่ยวสูง
4.5.4.2 ส่วนแบ่งตลาดนักท่องเที่ยวกับอำเภอใกล้เคียงมีมาก เช่นชะอำ

ปราณบุรี แก่งกระจาน
4.5.4.3 ต้องใช้ต้นทุนในการส่งเสริมการท่องเที่ยวสูง ในกรณีที่ไม่ใช้ อินเตอร์เน็ต เช่นโทรทัศน์หรือหนังสือพิมพ์

จากจุดเด่นของสถานที่ท่องเที่ยวและที่ตั้งที่สะดวกแก่การเดินทางส่งผลให้ อำเภอหัวหินเป็นสถานที่ที่นักท่องเที่ยวนิยมกันมาก หากมีการประชาสัมพันธ์ทางอินเตอร์เน็ตแก่ นักท่องเที่ยวอย่างทั่วถึงและถูกต้องก็จะสามารถลดจุดอ่อนด้านการหลอกลวงและลดต้นทุนด้าน การประชาสัมพันธ์ไปได้

## 4.6 ประเภทของสินค้าการท่องเที่ยว

จากแผนการตลาดการท่องเที่ยว ปี 2547 ของการท่องเที่ยวแห่งประเทศไทย ได้ กำหนดประเภทของสินค้าการท่องเที่ยวความสนใจพิเศษไว้ 13 ประเภทคือ
4.6.1 การท่องเที่ยวเชิงสุขภาพ
4.6.2 การท่องเที่ยวเชิงนิเวศและผจญภัย
4.6.3 การท่องเที่ยวเชิงเกษตร
4.6.4 การท่องเที่ยวเชิงกีฬา
4.6.5 การท่องเที่ยวเชิงวัฒนธรรม
4.6.6 การท่องเที่ยวในรูปแบบการพำนักระยะยาว
4.6.7 การท่องเที่ยวเชิงศาสนา
4.6.8 การท่องเที่ยวทางเรือ
4.6.9 การท่องเที่ยวเพื่อมารับประทานอาหาร
4.6.10 การท่องเที่ยวเพื่อการแต่งงาน
4.6.11 การท่องเที่ยวในแหล่งที่มนุษย์สร้างขึ้น
4.6.12 การท่องเที่ยวเพื่อมาซื้อสินค้า
4.6.13 การท่องเที่ยวเพื่อร่วมประชุม/สัมมนา/รับรางวัลและร่วมงานนิทรรศการ

การแบ่งกลุ่มโรงแรมเพื่อการท่องเที่ยวนั้น ททท. ได้กำหนดตามระดับราคาห้อง พัก โดยพิจารณาจากราคาประกาศขายต่ำสุด (Rack rate) เพื่อประโยชน์ในการดำเนินการวิเคราะห์ สถานการณ์และการวางแผนการตลาดเท่านั้น (ธนกฤต สังข์เฉย 2550: 311) ซึ่งจัดกลุ่มได้ดังนี้
 กลุ่มที่ 3 ราคาตั้งแต่ $1,000-1,499$ บาท
กลุ่มที่ 4 ราคาตั้งแต่ 500-999 บาท
กลุ่มที่ 5 ราคาต่ำกว่า 500 บาท
4.7 แหล่งที่มาของข้อมูลสถิติการท่องเที่ยวแบ่งเป็น
4.7.1 ข้อมูลแบบปฐมภูมิ (primary data) เป็นข้อมูลที่ได้จากการรวบรวมโดยตรง
4.7.2 ข้อมูลทุติยภูมิ (secondary data) เป็นข้อมูลที่มีผู้อื่นเก็บรวบรวมไว้แล้ว ผู้ใช้ ไม่ต้องลงมือเก็บข้อมูลเองจึงไม่ต้องใช้เวลาและค่าใช้จ่ายในการเก็บรวบรวมข้อมูลมาก แต่มักจะไม่ ค่อยตรงกับความต้องการของผู้ไช้ และข้อมูลอาจจะมีความบกพร่อง ไม่ครบถ้วนหรือล้าสมัย ดังนั้น ผู้ไช้จะต้องระมัดระวังในการนำข้อมูลไปใช้ โดยจะต้องทำการปรับปรุงเพิ่มเติมหรือปรับให้ ทันสมัย มิฉะนั้นแล้วอาจทำให้การนำไปใช้หรือการวิเคราะห์ผิดพลาดได้

## 5. ทฤษฎีและการวัดค่า

5.1 คิวรีที่เชื่อมต่อกัน (Conjunctive Query) (Abrahams 2006: 108)

คิวรีที่เชื่อมต่อกัน เป็นการนำคิวรีมาเชื่อมกันตามรูปแบบที่ต้องการใช้อาจเป็นใน รูปแบบ First Order Logic หรือ Description Logic


ภาพที่ 14 ขั้นตอนการเปรียบเทียบคิวรีต่อเนื่องกันที่มีกฎต่างกัน


เปรียบเทียบคิวรีที่เชื่อมต่อกันโดยศึกษาจากงานวิจัยของ Kolaitis และ Vardi (Kolaitis and Vardi 1998 : 205) ที่กล่าวถึงการเปรียบเทียบระหว่างปัญหาของการประเมินผลฐานข้อมูลและปรับปรุงให้ เกิดประโยชน์สูงสุด กับปัญหาพื้นฐานของปัญญาประดิษฐ์ แม้ว่าจะมีกฎแตกต่างกัน แต่ถือว่าเกิด ปัญหาเดียวกัน เนื่องจากสามารถเขียนเป็นรูปปัญหาทางพีชคณิตได้

นิยามที่ 1 ฐานความรู้เกี่ยวกับการใช้เทอม
ใช้ฐานความรู้เกี่ยวกับการใช้ถ้อยคำ $T$ เป็นทริพเพิล
$\mathrm{T}=[\mathrm{C}, \mathrm{R}, \mathrm{I}]$
เมื่อ C เป็นเซตของคลาส R เป็นเซตของความสัมพันธ์ และ I เป็นเซตของวัตถุ นำมาประยุกต์ใช้ในการออกแบบออนโทโลยี จะได้ $\mathrm{T}=[\mathrm{CN}, \mathrm{RN}, \mathrm{IN}]$ เมื่อ CN เป็นเซตของคลาส ทั้งหมด RN เป็นเซตความสัมพันธ์ทั้งหมดและ IN เป็นเซตชื่อวัตถุที่กำหนดฐานความรู้

## นิยามที่ 2 คิวรีเทอม

ให้ V เป็นเซตของตัวแปรที่ดิสจอยน์จากเซตของวัตถุ แล้ว Q เป็นคิวรี มีรูป ประโยคบนฐานความรู้ T ดังนี้
$\mathrm{Q}_{\mathrm{li}} \wedge \ldots \wedge \mathrm{Q}_{\mathrm{mi}}$

เมื่อ $\mathrm{Q}_{\mathrm{i}}$ เป็นเทอมที่คิวรีของ $\mathrm{X}: \mathrm{C}$ หรือ $(\mathrm{x}, \mathrm{y}): \mathrm{r}$ แล้ว $\mathrm{x}, \mathrm{y} \in \mathrm{V} \cup \mathrm{IN}, \mathrm{C} \in \mathrm{CN}$ และ $R \in R N$ นำไปใช้กับการเขียนคิวรีแบบ Casual Form ที่อยู่ในรูป AND

## ทฤษฎีที่ 1

ให้ $[\mathrm{C}, \mathrm{R}, \mathrm{A}]$ เป็นฐานความรู้แบบ DL เมื่อ C เป็นคอนเซปต์ R เป็นความสัมพันธ์ และ A เป็นเงื่อนไขที่ใช้ยืนยัน R เป็น Role คอนเซปต์ชื่อ $\mathrm{C}_{1}$ ซึ่งเป็น C และชื่อเฉพาะ $\mathrm{a}, \mathrm{b}$ เป็น A และกำหนดชื่อคอนเซปต์ใหม่ $P_{b}$ ไม่อยู่ใน C ดังนั้น $(\mathrm{C}, \mathrm{R}, \mathrm{A}) \vDash_{(\mathrm{a}, \mathrm{b}): \mathrm{R} \wedge \mathrm{b}: \mathrm{C}_{1} \wedge \ldots \wedge \mathrm{~b}: \mathrm{C}_{\mathrm{k}}}$

ถ้า $\left(C, R, A \cup\left\{b: P_{b}\right\}\right) \vDash_{a: ~}^{a r}\left(P_{b} \cap C_{1} \cap \ldots \cap C_{k}\right)$
หมายความว่า ถ้าเขียน Dependencies ระหว่างตัวแปรที่เกิดขึ้นในประโยคคิวรีทำ เป็นคิวรีที่สมบูรณ์ได้ยากจึงเปลี่ยนรูปเป็นกราฟตามนิยามที่ 3

## นิยามที่ 3 สามารถแปลง Dependencies ระหว่างตัวแปรในรูปกราฟได้

สามารถสร้าง Directed Graph ด้วยโหนดสำหรับทุกๆ ตัวแปรและชื่อเฉพาะในคิว รีและ Direced Edge จากโนด x ไปโนด y สำหรับทุกๆ เทอมของ Role ใน $(\mathrm{x}, \mathrm{y}): \mathrm{R}$ ในคิวรี

## นิยามที่ 4 Query Roll-up (Horrocks and Tessaris 2000)

การ Roll up คิวรี Q ด้วย query tree G เป็นประโยคคอนเซปต์ที่มาจาก Q ด้วยการ
 ดังนั้นด้าน $(\mathrm{x}, \mathrm{y})$ ถูกลบจาก G สามารถใช้นิยามนี้เพื่อลดรูป OWL ตาม Transitive properties และ Reclassify นั่นคือการแปลงคิวรีเชิงสัมพันธ์ไปเป็นเชิงความหมายได้ ถ้าอยู่ในโปรแกรม Protégé คือสร้างเทอมที่ต้องการคิวรีใน NECESSARY \& SUFFICIENT เพื่อให้ Reasoner หาคำตอบ

## 5.2 รูปแบบการประเมินผลคิวรี

รูปแบบการประเมินผลคิวรีคือการตั้งสูตรเพื่อช่วยวิเคราะห์ค่าคิวรีที่ซับซ้อน โดย เป็นรูปแบบที่สร้างจากมุมมองของระบบสารสนเทศทางธุรกิจ และออกแบบเพื่อใช้จริง โดยใช้ ประโยชน์จากประโยคเชิงความหมายและการตรวจเหตุผลของออนโทโลยี OWL-DL ทฤษฎีแบ่ง ออกเป็นสองส่วน คือ TBox ประกอบด้วยความรู้เรื่องการใช้ถ้อยคำผ่านการประกาศค่าที่อธิบาย คุณสมบัติทั่วไปของแนวคิด และ ABox ประกอบด้วยความรู้ในการยืนยันเฉพาะด้านสำหรับแต่ละ ขอบเขตเป็นส่วนสำคัญที่ต้องจำไว้ว่ามองความซับซ้อนข้อมูลตาม $\operatorname{Vardi}(V \operatorname{Vardi}$ 1982: 138) คือ สมมติฐานที่ ABox สามารถมองได้เป็น ฐานข้อมูลเชิงสัมพันธ์ สำคัญที่ต้องเข้าใจว่ารูปแบบการ ประเมินผลคิวรี ได้รับการออกแบบโดยใช้ฐานความรู้เป็นศูนย์กลาง หมายความว่าตรรกะที่ซับซ้อน ของการคิวรีประเมินจากข้อมูลที่มีอยู่โดยใช้ภาษา SQL หรือ SPARQL

## 5.3 การวัดค่าความซับซ้อนของคิวรี

วิธีวัดค่าความซับซ้อนของคิวรีบนฐานข้อมูล (Vardi 1982:138) มีดังต่อไปนี้
5.3.1 สามารถกำหนดค่าที่ต้องการคิวรีผ่านภาษาและเรียนรู้ความซับซ้อนของการ ประยุกต์ ใช้คิวรี ในการตัดสินฐานข้อมูล ความซับซ้อนที่ว่าอาจเป็นฟังก์ชันของขนาดฐานข้อมูล บ่อยครั้งเป็นการใช้ข้อมูลที่ซับซ้อนมาคิวรี
5.3.2 กำหนดฐานข้อมูลเฉพาะแล้วหาความซับซ้อนจากความยาวประโยคภาษา
5.3.3 ตัดสินจากความซับซ้อนจากขนาดของประโยคแล้วนำมาตัดสินฐานข้อมูล

โดยทั่วไปจะใช้ทั้งสามวิธีร่วมกันในการประเมินผลและวัดค่าความซับซ้อน เพื่อ เป็นเครื่องยืนยันว่าการใช้ความซับซ้อนทั้งสามมีค่าใกล้เคียง Expression ที่ซับซ้อนอย่างไร

## นิยามที่ 5 (Vardi 1982:138)

ให้ $\varphi$ เป็นประโยคขนาด s (ประโยคที่แสดงคิวรี) เมื่อ $\varphi$ มีมากสุด s ตัวแปร ตาม การประเมิน $\varphi$ บนฐานข้อมูลขนาด $n$ จำนวนการวนรอบที่เป็นไปได้มากสุดเท่ากับ $n^{5}$ ของค่าตัว แปรจากฐานข้อมูล

จากนิยามข้างต้น ความซับซ้อนของคิวรีสามารถกำหนดตามตรรกะดังนี้
$\exists \varphi\left((\varphi \longrightarrow \mathrm{s}) \wedge\left(\mathrm{s} \equiv \mathrm{n}^{\mathrm{s}}\right)\right)$
อธิบายได้ว้าสึาหรับบางประโยค $\varphi$ มีขนาดง และ $ง$ เป็นจำนานจากการกำหนด ตัวแปรจากฐานข้อมูล ถูกกำหนดเป็น $\varphi$ ดังนั้นค่าความซับซ้อนของ $\varphi$ แสดงเป็นฟังก์ชันได้ว่า $\mathrm{s} \equiv \mathrm{n}^{\mathrm{s}}$ ส่วนค่าความซับซ้อนของคิวรีสามารถคำนวณอย่าง่ายได้เป็น $\mathrm{n}^{\mathrm{s}}$ และสามารถทำให้อยู่ในรูป Space $O(\log n)$ ดังนั้นเซตของฐานข้อมูลทั้งหมด $\varphi$ อยู่ใน LOGSPACE ดังทฤษฎีที่ 2

ทฤษฎีที่ 2 (Calvanese 2006:268)
คำตอบของคิวรีใน DL-Lite $_{\mathcal{F}, ก \text { เป็น } F O L \text {-reducible แล้วจะได้ผลลัพธ์ใน }}$ LOGSPACE ตามความซับซ้อนของข้อมูล

```
Query A:
Q}(\textrm{X})\leftarrow\mathrm{ Accommodation(X) }\wedge\mathrm{ has.AcDestination(X,V) }\wedge\mathrm{ hasDesAttraction(V,W) }\wedge\mathrm{ hasCategory (X,Y) }
hasAcFacility(X,Y)}\wedge\textrm{W}=\textrm{SPA}\wedge\textrm{Y}=\mathrm{ Hotel }\wedge\textrm{Z}=\mathrm{ SwimmingPool
Query B:
\(\mathrm{Q}(\mathrm{X}) \leftarrow\) Hotel \((\mathrm{X}) \wedge\) hasDesAttraction \((\mathrm{X}, \mathrm{W}) \wedge\) hasAcDesFacility \((\mathrm{X}, \mathrm{Z}) \wedge \mathrm{W}=\mathrm{SPA} \wedge \mathrm{Z}=\) SwimmingPool
```

ภาพที่ 15 คิวรีที่เชื่อมกันแล้วนำมาเปรียบเทียบ

การพิจารณาคิวรีที่ต่อเนื่องกัน เน้นออนโทโลยีใน DL และศึกษาความซับซ้อน ข้อมูลของการตอบคิวรีโดยออนโทโลยีแบบ DL เปรียบเทียบให้เห็นจากคิวรี A และ B ดังภาพที่ 15 สมมติค่าต่อไปนี้ มีที่พักอาศัย (Accommodation) 100 แห่ง อยู่กลุ่ม Hotel และมี สระว่ายน้ำ (Swimming pool) มีที่หมาย (AcDestination) 30 แห่งที่มีสิ่งดึงดูดใจ (DesAttraction) คือสปา และมีที่พักอาศัยอยู่ 10 แห่งอยู่กลุ่ม Hotel มีสระว่ายน้ำและสปาในบริเวณนั้น อธิบายวิธิคิดได้ดังนี้ สำหรับคิวรี A ตัวแปร X แสดงจำนวนสมาชิกของ Hotel แต่จอยกับที่พัก 100 แห่งในกลุ่ม Hotel โดยคิวรีมีค่า $\mathrm{X}^{\mathrm{s}}=100$ ต่อมาตัวแปร V แสดงที่หมายที่มีสปา เป็นสิ่งดึงดูดใจมีค่า 30 ส่วนค่าของ $\mathrm{n}^{\mathrm{s}}$ เป็นจำนวนสมาชิกทั้งหมดของ X และ V สำหรับ A มีค่า $\mathrm{n}^{\mathrm{s}}=$ $\mathrm{X}^{\mathrm{s}} * \mathrm{~V}^{\mathrm{s}}$ เป็น $100 * 30=3000$ สำหรับคิวรี B ตัวแปร X แสดงรายการของคลาส Hotel โดยตรงซึ่ง เป็นสับคลาสของ Accommodation คิวรีเริ่มที่ระดับสับคลาสเพราะฟังก์ชันตรวจสอบความเป็น เหตุผลจัดกลุ่มใหม่ ดังนั้นตัวแปร $\mathrm{X}=100$ เพราะมีที่พักอาศัย 100 แห่งที่เป็นสมาชิกของคลาส Hotel ใน QueryB ไม่มีการกำหนดตัวแปร V เพราะใช้คุณสมบัติการถ่ายทอดจาก hasDesAttraction เป็น hasAcDestination สามารถย้ายคิวรีเมื่อประมวลผลตามรูปแบบออนโท โลยีที่ตั้งไว้ อธิบายได้ ว่าคือ QueryB ถาม Accommodation ว่ามี hasDesAttraction $=\mathrm{SPA}($ Constant Value) หรือไม่
 AcDestination มี DesAttraction = SPA อนุประโยค SPA ใน Query B ไม่ได้เชื่อมกับ AcDestination ด้วยตัวแปร V แต่มีค่าคงที่โดยตรงตาม Accommodation ด้วย X เพราะมี Hotel 10 แห่งที่มีตัวแปรคงที่ Swimming Pool และ DesAttraction เป็น SPA สำหรับQueryB จะได้ว่า $\mathrm{X}=10$ และ $\mathrm{n}^{\mathrm{s}}=10$ ด้วย

ตารางที่ 8 รูปแบบการประเมินผลคิวรี

| คิวรี | การวัด |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{X}^{\mathrm{s}}$ | $\mathrm{V}^{\mathrm{s}}$ | $\mathrm{n}^{\mathrm{s}}=\mathrm{X}^{\mathrm{s} *} \mathrm{~V}^{\mathrm{s}}$ | \#เทอม | \#จอย | ระดับความลึก | ดีกรีความซับซ้อนคิวรี |  |
| A | 100 | 30 | 3000 | 6 | 1 | 1 | 3.477 |  |
| B | 10 | $\varnothing$ | 10 | 4 | 0 | 2 | 1 |  |

การเปรียบเทียบระหว่างคิวรี A และ B แสดงตามตารางที่ 8 ตัวแปรที่เกิดขึ้นมีคิวรี มากกว่าหนึ่งเทอมและคิวรีที่เชื่อมกันคิดเหมือนการจอยใน SQL สำหรับฐานข้อมูลเชิงสัมพันธ์

การจอยประกอบด้วยรูปแบบการประเมินผลสำหรับวิเคราะห์การอธิบายตาม จำนวนเทอมของการคิวรี แสดงโดยจำนวนวงเล็บของอนุประโยคเช่น $(\mathrm{V})$

อธิบายตารางที่ 8 รูปแบบการประเมินผลแสดงว่า A นั้นซับซ้อนกว่าเพราะวนหา 3,000 รอบเทียบกับ QueryB ที่วน 10 รอบ คิวรี A มีจำนวนการจอยมากกว่า QueryB อยู่ 1 คิวรี A มี จำนวนเทอมที่คิวรี 6 เทอมส่วน QueryB มีค่า 4 เทอมเป็นเพราะความสามารถของออนโท โลยีและ ตัวตรวจสอบความหมายที่ตัดความซ้ำซ้อนออกไป ส่วนดีกรีของความซับซ้อนของ A มีค่ามากกว่า $B$ อยู่ 3.477 เท่า สรุปว่าคิวรี $B$ ใช้ออนโทโลยีเชิงความหมายและตั้งกฎทำให้มีคิวรีความซับซ้อน น้อยกว่าคิวรี A ด้วยการกำจัดการจอยและลดจำนวนประโยคคิวรีทำให้เครื่องประมวลผลได้ง่ายขึ้น

## 5.4 การเพิ่มกฎของ OWL-DL และการปรับออนโทโลยีของการท่องเที่ยวใน

 อำเภอหัวหิน ให้มีความซับซ้อนมากขึ้นเนื่องจากในส่วนแรกของการทำออนโทโลยีนั้นได้รับรูปแบบของการออกแบบ ออนโทโลยีจากฐานข้อมูลเชิงสัมพันธ์ที่ได้รับจากเทศบาลอำเภอหัวหิน พบว่ายังไม่ครอบคลุมทุก ด้านของการท่องเที่ยวตามหลักอุตสาหกรรมการท่องเที่ยวและการบริการ (ธนกฤต สังข์เฉย 2550:50) และการนำไปใช้ซ้ำกับแหล่งท่องเที่ยวในเขตอื่นที่มีโดเมนเดียวกัน หรือการเชื่อมโยง คว่มสัมพันธ์ของออนโทโลยี ดังน้นจึงมีการศึกษาออนโทโลยื่อื่นี่เกี่ยวข้องพื่อนำมปรับปรุง ออนโทโลยีที่มีอยู่ให้เป็นสากล สำหรับการวิจัยนี้ได้ทำการศึกษาออนโทโลยีดังตารางที่ 9 ซึ่ง ทั้งหมดเป็นการวิจัยออนโทโลยีที่ทำในขอบเขตของการท่องเที่ยวที่มีความน่าเชื่อถือดังแหล่งอ้างอิง ในตาราง ข้อดีของการใช้วิธีนี้คือเหมาะกับการออกแบบที่ต้องการความเร็วสำหรับการวิจัยที่มี ระยะเวลาจำกัดและต้องการ โครงสร้างออนโทโลยีที่มีความถูกต้องตามกฎเกณฑ์ของขอบเขตสากล ของการท่องเที่ยว ที่มีความแตกต่างกันไปตามสภาพพื้นที่หรือกรณีศึกษาเฉพาะ

ตารางที่ 9 ออนโทโลยีเกี่ยวกับการท่องเที่ยวที่ศึกษา

| ชื่อออนโทโลยี | บุคคลหรือองค์กรที่ทำการวิจัย | DL expressivity |
| :--- | :--- | :--- |
| Travel.owl | Holger Knublauch (holger@smi.stanford.edu) | $\operatorname{SHIN}(\mathcal{D})$ |
| Etp-tourism.owl | Petko Valtchev | $\operatorname{SHOI\mathcal {N}(\mathcal {D})}$ |
| e-tourism.owl | DERI (STI Innsbruck 2009) | $\mathcal{A L C H I F ( \mathcal { D } )}$ |
| AccommodationV2.1.owl | พัฒนาเพื่อโครงงาน Alis TechNet โดย WP4- <br> Costa Rica equipment | $\mathcal{A L V O \mathcal { N } ( \mathcal { D } )}$ |
| Price.owl | http://gaia.fdi.ucm.es/ontologies/price.owl | $\operatorname{SHIF}(\mathcal{D})$ |

คำอธิบาย DL expressivity จากตารางที่ 9 มาจากภาษา OWL DL เป็น Description Logic เนื่องจากสามารถแสดงโครงสร้างตาม $\mathcal{A L C}$ LOGIC ได้ โดยที่ $\mathcal{A L}$ คือ Attribute Language Logic เป็นคอนสตรัคเตอร์หรือเป็นมินิมัลลอจิกที่ใช้ศัพท์ที่ใช้งานจริงมีเอ็กเทนชั่นพื้นฐานดังนี้ $V=$ การยูเนี่ยนของสองคอนเซปต์, $\mathcal{E}=$ การบ่งปริมาณ, $\mathcal{N}=$ จำนวนของรีสตริคชั่นและ $C=$ การคอมพลี เมนต์ ต่อมามีการขยายความด้วย $C$ คือรวม $V$ และ $E$ เข้าด้วยกัน รูปแบบไวยากรณ์อย่างเป็น ทางการของ $A \mathcal{L} C$ ใช้บอกว่าโครงสร้างคลาสที่ตั้งไว้มีความซับซ้อนระดับใด หากให้ A เป็น atomic class และ R เป็นความสัมพันธ์ แล้วประโยคคลาส $\mathrm{C}, \mathrm{D}$ ถูกสร้างขึ้นได้ดังกฎต่อไปนี้
$\mathrm{C}, \mathrm{D}::=\mathrm{A}|\mathrm{T}| \perp|\neg \mathrm{C}| \mathrm{C} П \mathrm{D}|\mathrm{C} \sqcup \mathrm{D}| \forall \mathrm{R} . \mathrm{C} \mid \exists \mathrm{R} . \mathrm{C}$
จากที่กล่าวมาแล้วว่าคอนสตัคเตอร์หรือสัจพจน์ที่ได้จากตรรกะ $A \mathcal{L} C$ สามารถใช้ ระบุชื่อของตรรกะที่ใช้ใน DL Expressivity ว่าซับซ้อนในระดับใด ตัวย่อและความหมายที่สนใจใน งานวิจัยมีดังต่อไปนี้ ซึ่งมีการกล่าวถึงการใช้ในภาษา OWL อย่างละเอียดดังภาคผนวก ง
$F=$ functionality $\leq 1 \mathrm{R}$ เป็นความสัมพันธ์แบบฟังก์ชันนั่ลในการสร้างคอนเซปต์
$S=$ role transitivity $\operatorname{Trans}(R)$ คือการกำหนดความสัมพันธ์ประเภททรานสิทีฟ
$\mathcal{H}=$ role hierarchy $R \subseteq S$ คือการกำหนดความสัมพันธ์
$I=$ releinverse $R$ ถารกำหนดความสัมพันธ์แบบอินเวอร์ส
$O=$ nominal $\left\{a_{1}, \ldots, 1_{n}\right\}$ การประกาศสมาชิกของคลาส
นอกจากนี้ $\mathcal{A L C}$ ยังเป็นฐานความรู้ที่ประกอบด้วย TBox คือประ โยค $\mathrm{C} \equiv \mathrm{D}$ หรือ สัจพจน์ $\mathrm{C} \sqsubseteq \mathrm{D}$ และ ABox คือประโยคในรูปแบบ $C(a)$ และ $R(a, b)$ เมื่อ C เป็นคลาส R เป็น ความสัมพันธ์ส่วน $a, b$ เป็นอินสแตนซ์

## 5.5 วิธีการที่ใช้ในการค้นหา

จากขั้นตอนการค้นหาเว็บไซต์โดยทั่วไปไว้ดังภาพที่ 16 (Alesso 2004:400) ซึ่ง อธิบายได้ว่าขั้นตอนในการค้นหาเว็บไซต์ทั่วไปนั้นส่วนที่แตกต่างกันระหว่างเครื่องมือที่ใช้แต่ละ ชนิดคือขั้น "กระทำการค้นหา" ที่ประกอบไปด้วยอัลกอริทึมและภาษาคิวรีที่ใช้ ในกรณีได้การ ค้นหาตามกฎ OWL-DL โดยใช้คิวรีของ SPARQL นั้นสามารถใช้การคิวรีด้วยฟังก์ชันของไลบราลี่ $A R Q$ ใน Jena Middleware RDF API ได้ ซึ่งเป็นการค้นหาโดยใช้พื้นฐานจากภาษา SPARQL ที่เป็น คิวรีทั่วไปตามรูปแบบที่นำเสนอในภาคผนวก ช ที่มีเงื่อนไขการคิวรีที่แตกต่างกันไป ซึ่งในกรณีที่ ข้อมูลส่วนใหญ่เป็นข้อความเท็กซ์สามารถนำฟังชัน $L A R Q$ ที่เป็นการรวมคุณลักษณะของ $A R Q$ และการค้นหาข้อความในระดับสูงของ Apache Lucene ที่เขียนโดยภาษา Java ที่เหมาะจะนำมา ประยุกต์ไช้กับเครื่องมือค้นหาข้อความ ที่อยู่ต่างแพลตฟอร์มกันกล่าวโดยสรุปคือฟงก์ชัน LARQ

นำความสามารถของ $A R Q$ มาประยุกต์ใช้ในการค้นหาข้อความจาก RDF/OWL และนำดัชนีของ Lucene มาทำดัชนีเพิ่มจากกราฟ RDF โดยการนำ LARQ มาประยุกต์ใช้งานแบ่งเป็น 3 รูปแบบดังนี้ รูปแบบที่ 1 ทำดัชนีแก่อักขระสตริง ตัวดัชนีจะคืนค่าอักขระที่เจอตามรูปแบบการ ค้นหาของ Lucene


ภาพที่ 16 ขั้นตอนที่ใช้ในการค้นหาเว็บทั่วไป
ที่มา: H. P. Alesso and C. F. Smith, Developing Semantic Web Services (Wellesey: A K Peters Ltd., 2004), 400.

รูปแบบที่ 2 ทำดัชนีของ Subject โดยอักขระสตริง จากนั้นคืนค่า Subject ตามค่า คุณสมบัติที่คิวรี ทั้งรูปแบบที่ 1 และ 2 นี้ทำสารบัญดัชนีโดยตรงจากกราฟ RDF

รูปแบบที่ 3 ทำดัชนีโหนดของกราฟตามสตริงที่เป็นรูปแบบภายนอกที่ไม่ใช่ กราฟ RDF ทั้งหมด เช่นเอกสาร HTML, XHTML,PDFs หรือ XML ซึ่งกราฟ RDF เก็บเมตาดาตา ของเอกสารเหล่านี้เท่านั้น

สำหรับวิทยานิพนธ์ฉบับนี้นำการค้นหาโดยใช้ LARQ แบบที่ 1 และ 2 มา ประยุกต์ใช้ในการค้นหาตามประเภทที่ผู้ใช้เลือกคือการค้นหาแบบใช้คำสำคัญและการค้นหาแบบ ก้าวหน้าโดยมีหน้าจอให้เลือกตามเงื่อนไข

## 5.6 เครื่องมือวัดประสิทธิภาพของความซับซ้อนของคิวรีระหว่างฐานข้อมูลเชิงสัม-

 พันธ์และฐานความรู้การนำการวัดค่าความซับซ้อนคิวรีมาใช้วัดประสิทธิภาพของคิวรีที่ตั้งขึ้นทั้งคิวรี จากฐานข้อมูลเชิงสัมพันธ์โดยใช้ SQL และการคิวรีจากฐานความรู้ออนโทโลยีโดยใช้ SPARQL นั้นจำเป็นต้องมี Benchmark มาเปรียบเทียบ สำหรับงานวิจัยนี้ได้มีการศึกษาระบบ The Berlin SPARQL Benchmark (Bizer 2009: 1-24) ที่เปรียบเทียบระหว่างระบบ Native RDF Stores ที่ใช้ SPARQL กับ non-RDF Relational Databaseที่ใช้ SQL แตกต่างจากเครื่องมือวัดประสิทธิภาพด้าน เว็บเชิงความหมายอีก 2 ชนิดคือ SP2Bench ที่เปรียบเทียบระหว่าง RDF Store เท่านั้นและละเอียด กว่า LUBM ที่เน้นการตรวจเหตุผลและเน้นที่การแมชชิ่ง (matching) และแมปปิ้ง (mapping) ออน โทโลยีเพื่อนำมาประยุกต์ใช้ในการวัด ในส่วนขั้นตอนการทดสอบของ Berlin SPARQL Benchmark ประกอบด้วยการโหลดเซตของข้อมูลที่ต้องการวัดผล จากนั้นปิดส่วนเก็บข้อมูล ล้าง
 เดียว รันโดยผู้ใช้หลายคนและรันโดยการลด Query mix ตามลำดับ ค่าที่วัดนำมาประกอบกับเวลาที่ ใช้คือ Query Mixes per Hour $(\mathrm{QMpH})$ Queries per second $(\mathrm{QpS})$ และ Load Time $(\mathrm{LT})$


ภาพที่ 17 ไลบราลี่ที่ใช้ใน The Berlin SPARQL Benchmark

## บทที่ 3

## วิธีดำเนินการวิจัย

ขั้นตอนการวิเคราะห์และออกแบบระบบงานในการทำวิทยานิพนธ์ประกอบด้วย การ วิเคราะห์ความต้องการของระบบงาน การออกแบบและวิเคราะห์ระบบงาน การพัฒนาโปรแกรม และขั้นตอนการทดสอบระบบ

## 1. การวิเคราะห์ความต้องการของระบบงาน

สารสนเทศด้านการท่องเที่ยวที่ต้องใช้ในการวิจัยคือระบบค้นหาออนโทโลยีด้านการ ท่องเที่ยวของอำเภอหัวหินที่อยู่บนโครงสร้างของเว็บเชิงความหมาย โดยมีแหล่งของสารสนเทศ ด้านการท่องเที่ยวที่ใช้ในการวิจัยมีมาจากเว็บไซต์ดังต่อไปนี้
1.1 แหล่งสารสนเทศทางราชการ เว็บไซต์เทศบาลเมืองหัวหิน http://huahin.go.th 1.1.1 สิ่งดึงดูดนักท่องเที่ยวได้แก่สถานที่ท่องเที่ยว ร้านอาหาร กิจกรรม 1.1.2 ที่มากี่ยวกับอำเภอหัวหิน ข่าวสารทั่วป
1.1.3 ที่พักแรม แบ่งเป็น 4 ประเภท คือ โรงแรม บังกะโล รีสอร์ทและเกสต์เฮาส์ พร้อมรายละเอียดสิ่งอำนวยความสะดวกในสถานที่พักแรม
1.1.4 ประกอบด้วยเว็บเพจที่เกี่ยวกับที่พักแรมมากกว่า 150 หน้า จึงเป็นการ จำลองเสมือนหนึ่งว่าเว็บเพจแต่ละหน้าแทนสถานที่นั้นๆ จึงมีที่พักแรมมากกว่า 150 สถานที่ สาเหตุที่ใช้เว็บไซต์นี้เป็นหลักเนื่องจากเป็นเว็บไซต์อย่างเป็นทางการของเทศบาล เมืองหัวหิน มีการอัพเดตข้อมูลตลอดเวลา และให้ข้อมูลชื่อ ที่อยู่ ภาพประกอบ รายละเอียดของที่ พักแรม มีทั้งภาษาไทยและภาษาอังกฤษเหมาะที่จะใช้เป็นสารบัญนำร่องในการค้นหาข้อมูล
1.2 แหล่งสารสนเทศการท่องเที่ยวเกี่ยวกับอำเภอหัวหินที่เป็นเว็บไซต์เอกชนดัง ภาคผนวก ค ที่แสดงตารางประกอบด้วยชื่อที่พักแรม และเว็บไซต์แหล่งสารสนเทศด้านการ ท่องเที่ยวที่ใช้ในการวิจัย

สาเหตุที่ใช้เว็บไซต์นี้เนื่องจากเว็บไซต์อย่างเป็นทางการของเทศบาลเมืองหัวหิน นั้นมีหน้าจอที่ประกอบด้วยข้อมูลจำกัดชื่อที่พักแรม สถานที่ที่มีการอัพเดตข้อมูลแล้วบางครั้งขาด ข้อมูลที่ใช้ในการติดต่อ ภาพของสภาพห้องพักเฉพาะที่เปลี่ยนไป เป็นต้น จึงต้องเก็บข้อมูลเพิ่มเติม จากเว็บไซต์เอกชนในส่วนที่ต้องการเพิ่มเติมจากเว็บไซต์เทศบาล

## 2. การออกแบบและวิเคราะห์ระบบงาน

2.1 สถาปัตยกรรมระบบงาน

จากภาพที่ 18 และ 19 อธิบายการทำงานของสถาปัตยกรรมของระบบและ ภาพรวมของส่วนพัฒนาโปรแกรมตามลำดับดังนี้ การทำงานของสถาปัตยกรรมของระบบ ผู้ใช้เปิด หน้าจอค้นหาเว็บเชิงความหมายผ่านระบบอินเตอร์เน็ตมาที่เซิร์ฟเวอร์เพื่อค้นหาเอกสารเว็บเชิง ความหมายเกี่ยวกับการท่องเที่ยว เมื่อผู้ใช้คิวรีแล้วกดตกลง ผลลัพธ์จะถูกแสดงแก่ผู้ใช้ โดยผู้ใช้ ทำงานผ่านหน้าจอค้นหาและแสดงผล ซึ่งผู้วิจัยทำการพัฒนาออนโทโลยีโดยโปรแกรม Protégé 3.3.1 มี Pellet เป็น Reasoner และพัฒนาโปรแกรมผ่าน Jena Java API ที่ใช้สำหรับผู้พัฒนาด้วย ภาษา Java


ภาพที่ 18 สถาปัตยกรรมของระบบ


 HTML และ RDF/OWL ซึ่งทั้งหมดนี้ำาพพื่อให้ว็นบพจตรรมดาป็็นวน็นชิงคความหมายสำหรับใท้




ภาพที่ 19 องค์ประกอบการพัฒนาโปรแกรมเว็บเชิงความหมายของงานวิจัยนี้

อธิบายการทำงานระหว่างสถาบ゙ตยกรรมและองค์ประกอบการพัฒนาโปรแกรม จากภาพที่ 18 ได้ว่าส่วนของมิดเดิลแวร์ของเว็บเชิงความหมายคือ Jena Java APL คือ Semantic Web Framework ในภาพที่ 19 และส่วนของ Pellet Reasoner ในภาพที่ 18 คือ Reasoner ของภาพที่ 19

### 2.2 Data Flow Diagram

2.2.1 Context Diagram ของระบบเว็บเชิงความหมายการท่องเที่ยวหัวหิน

อธิบายภาพที่ 20 ระบบสารสนเทศการท่องเที่ยวแบบเว็บเชิงความหมายที่มี จุดมุ่งหมายเพื่อให้ผู้ใช้ค้นหาแหล่งสารสนเทศด้านการท่องเที่ยวของอำเภอหัวหินมีผู้เกี่ยวข้องกับ ระบบจำนวน 2 กลุ่มคือกลุ่มผู้ดูแลระบบที่มีหน้าที่หลักคือเตรียมฐานความรู้เพื่อให้นักท่องเที่ยวเข้า มาค้นหาประกอบด้วยอินพุตดังต่อไปนี้ค้นหา URL ที่เกี่ยวข้องกับแหล่งสารสนเทศด้านการ ท่องเที่ยวของหัวหินจากนั้นดาวน์โหลดมาเพื่อเพิ่มอินสแตนซ์ในออนโทโลยีตามขอบเขตด้านต่างๆ และสร้าง ปรับปรุงและลบเว็บสารสนเทศที่ไม่เกี่ยวข้องกับระบบออกได้ จากนั้นระบบจะทำการ ประมวลผลจนได้ผลลัพธ์ออกมาคือเว็บที่ทำการเพิ่มเมตาดาตาและทำการอัพโหลดกลับสู่โดเมน เดิมของเว็บ


ภาพที่ 20 Context Diagram ของระบบเว็บเชิงความหมายการท่องเที่ยวหัวหิน

### 2.2.2 Level 0 ของระบบเว็บเชิงความหมายการท่องเที่ยวหัวหิน Level 0 ของระบบเว็บเชิงความหมายการท่องเที่ยวหัวหินเป็นดังภาพที่ 21



ภาพที่ 21 Level 0 ของระบบเว็บเชิงความหมายการท่องเที่ยวหัวหิน

จากภาพที่ 21 Level 0 ของระบบเว็บเชิงความหมายการท่องเที่ยวหัวหินประกอบด้วย ระบบย่อยที่ 1 ทำหน้าที่จัดการคำอธิบายของระบบ และระบบย่อยที่ 2 ทำหน้าที่จัดการการค้นหา ออนโทโลยีของระบบ
2.2.3 Level 1 ของระบบย่อยควบคุมการสร้างและแสดงผลเอกสาร RDF หรือ ระบบเพิ่มคำอธิบาย


ภาพที่ 22 Level 1 ของระบบย่อยควบคุมการสร้างและแสดงผลเอกสาร RDF
2.2.4 Level 1 ของระบบย่อยค้นหาเชิงความหมาย


ภาพที่ 23 Level 1 ของระบบย่อยค้นหาเชิงความหมาย

สรุปการทำงานของผู้ใช้ กิจกรรมการทำงานของระบบ และระบบย่อยดัง ตารางที่ 10 แสดงกิจกรรมการทำงานของระบบ ชื่อระบบย่อยและกิจกรรมของผู้ใช้ทั้งผู้ดูและระบบ และนักท่องเที่ยวที่กระทำกับระบบ

ตารางที่ 10 แสดงรายละเอียดการทำงานของเครื่องมือในระบบ

| ผู้ไช้: นักท่องเที่ยว | กิจกรรมการทำงานของเครื่องมือ | เครื่องมือในระบบ |
| :---: | :---: | :---: |
| ค้นหาเว็บไซต์ | หาคำตอบให้ผู้ใช้ | Search |
| ผู้ใช้: ผู้ดูแลระบบ | กิจกรรมการทำงานของระบบย่อย | ชื่อระบบย่อย |
| ดาวน์โหลดเว็บไซต์ | ดึงเว็บไซต์มาสร้างเป็นเว็บเชิงความหมาย | FTP Client |
| เลือกใช้ออนโทโลยี | บันทึกออนโทโลยีที่ได้รับการเลือก | Ontology Manager |
| สร้างคำอธิบาย | สร้างแท็ก RDF/OWL | Website Annotation |
| แก้ไขคำอธิบาย | แก้ไขแท็ก RDF/OWL | Website Annotation |
| ลบคำอธิบาย | ลบแท็ก RDF/OWL | Website Annotation |
| อัพโหลดเว็บไซต์ | นำเว็บไซต์ที่ทำการแปลงแล้วคืนโซตส์เดิม | FTP Client |

### 2.3 ER Diagram



ภาพที่ 24 ER Diagram
อธิบายภาพที่ 24 เมื่อสร้าง ER Diagram จากฐานข้อมูลที่ได้รับจากเทศบาลเมือง หัวหินดังภาคผนวก ค ได้ดังภาพที่ 24 แล้วจึงสร้างฐานข้อมูลตาม ER Diagram เพื่อทำการทดสอบ ประสิทธิภาพระหว่างฐานข้อมูลเชิงสัมพันธ์และฐานความรู้
$\Varangle$


### 2.4.1 รายละเอียดคลาสและคุณสมบัติในออนโท โลยีที่ทำการวัดค่าความซับซ้อน

ตารางที่ 11 คลาส คลาสย่อย และรายละเอียดของคลาส


อธิบายตารางที่ 11 แสดงคลาส คลาสย่อยและรายละเอียดของคลาสในออน โท โลยีที่ใช้ในระบบ ส่วนในคลาสที่ไม่มีคลาสย่อย เช่น Rate มี individual เป็นระดับห้องพัก, Category มี individual เป็นประเภทที่พักแรม และ Classification มี individual เป็นประเภทของ แหล่งท่องเที่ยว

ตารางที่ 12 คุณสมบัติของวัตถุ


อธิบายตารางที่ 12 แสดงรายชื่อคุณสมบัติของวัตถุในออนโท โลยี พร้อม ด้วยคำอธิบาย โดเมน เรนจ์ อินเวอร์ส และคุณสมบัติที่มีสมบัติการถ่ายทอด

ตารางที่ 13 คุณสมบัติของประเภทข้อมูล


คำอธิบาย โดเมนและเรนจ์ของคุณสมบัตินั้น
The DL expressivity of this ontology is:
$\mathcal{S O} \mathcal{I}(D)$

| Symbol | Explanation |
| :--- | :--- |
| Abbreviation for ALC with transitive roles. ALC allows concept intersection, full negation, full |  |
| universal quantification, full existential quantification, and concept disjunction. |  |

ภาพที่ 26 การวัดค่า DL Expressivity ของออนโทโลยีที่ 1

เมื่อสร้างออนโทโลยีตามข้อมูลที่ได้จากฐานข้อมูลเชิงสัมพันธ์แล้วสามารถ วัดค่า DL Expressivity ของออนโทโลยีแรกนี้ได้ดังภาพที่ 26 และมีการวัดค่าคลาสและคุณสมบัติ ได้ดังภาพที่ 27 จากฟังก์ชัน OWL Model Metrics ของ Protégé 3.3.1


ภาพที่ 28 แสดงออนโทโลยีด้าน Asserted Hierarchy ที่ได้จากปลั๊กอิน OWLViz ของโปรแกรม Protégé 3.3.1 จากนั้นตรวจสอบค่าว่าคลาส Inconsistent หรือไม่ด้วย โปรแกรม Reasoner ดังภาคผนวก ข แล้วทดสอบเพื่อประเมินผลออนโทโลยีขั้นนี้กับฐานข้อมูล เชิงสัมพันธ์


ภาพที่ 28 ออนโท โลยีของการท่องเที่ยวของอำเภอหัวหินสร้างโดย Protégé 3.3.1

## 3. การทดลองและประเมินผล

3.1 การเปรียบเทียบประสิทธิภาพของการค้นหาตามหลักการของเว็บเชิงความหมาย เปรียบเทียบกับการค้นหาบนฐานข้อมูลเชิงสัมพันธ์ โดยแบ่งระดับการค้นหาให้ซับซ้อนต่างกัน 5 ระดับ จากหลักการของ Class Benchmark ที่ Castro (2008) ได้รวบรวมไว้สามารถสรุปการทดสอบ คิวรีได้ดังตารางที่ 14 โจทย์คิวรีดังข้อความด้านล่างแล้วจึงวัดค่าตามตารางดังบทที่ 4

ตารางที่ 14 การเลือกคิวรีมาทดสอบโดยพิจารณาตามขนาดข้อมูล โดเมนและ ความลึก

| No. | Size | Basic Domain | Other Domain | Depth |
| :---: | :--- | :---: | :--- | :---: |
| 1 | + | $/$ | - | 0 |
| 2 | ++ | $/$ | Location | 1 |
| 3 | +++ | $/$ | Location, Attraction | 2 |
| 4 | +++ | $/$ | Attraction, Classification | 2 |
| 5 | ++++ | $/$ | Location, Attraction, Classification | 3 |

คิวรีระดับที่ 1 ค้นหาบังกะโลที่อยู่ใกล้หาดหัวหิน ที่มีเครื่องอำนวยความ สะดวกเช่นตู้เย็นและเครื่องปรับอากาศในห้องพักราคาระดับที่ 2

คิวรีระดับที่ 2 ค้นหาบังกะโลที่อยู่ใกล้หาดหัวหินบนถนนสายหัวหิน-ตะเกียบ ที่มีเครื่องอำนวยความสะดวกเช่นตู้เย็นและเครื่องปรับอากาศในห้องพักราคาระดับที่ 2

คิวรีระดับที่ 3 ค้นหาโรงแรมที่อยู่ใกล้หาดหัวหินในชุมชนแนบเคหาสน์ ที่มี ห้องพักราคาระดับที่ 1 และมีร้านนำชัยเกี๊ยวปลาและภัตตาคารอยู่ยย็นอยู่ในบริเวณเดียวกัน

คิวรีระดับที่ 4 ค้นหาที่พักแรมแบบบังกะโล ราคาที่พักระดับ 4 มีสิ่งอำนวย ความสะดวกคือ สวน และอยู่ใกล้ชายทะเล อยู่ใกล้สถานที่เที่ยวแบบแหล่งอาหารในชุมชนตะเกียบ

คิวรีระดับที่ 5 ค้นหาโรงแรมที่ตั้งอยู่บนถนนเพชรเกษม ริมหาดหัวหิน ใกล้ พระราชวังไกลกังวล แหล่งอาหารและซื้อสินค้า ราคาห้องพักระดับที่ 1 รวมถึงมีบริการนวดแผน ไทย

ขั้นต่อมาเขียนกฎที่ใช้ในการค้นหาเพื่อนำไปแปลงเป็นคิวรี SQL และ SPARQL

คิวรีระดับที่ 1 ค้นหาบังกะโลที่อยู่ใกล้หาดหัวหิน ที่มีเครื่องอำนวยความ สะดวกเช่นตู้เย็นและเครื่องปรับอากาศในห้องพักราคาระดับที่ 2

กฎที่ใช้ในการค้นหา
RDB1: $\mathrm{Q}(\mathrm{X})<-$ Accommodation( X$) \wedge$ hasRate $(\mathrm{X}, \mathrm{A}) \wedge$ hasCategory $(\mathrm{X}, \mathrm{B}) \wedge$ hasAccommodationFacility $(\mathrm{X}, \mathrm{C}) \wedge$ hasAccommodationFacility $(\mathrm{X}, \mathrm{D}) \wedge$ hasFacility $(\mathrm{X}, \mathrm{E}) \wedge$ $\mathrm{A}=$ Room_Rate_2 $\wedge \mathrm{B}=$ Category_Bangalow $\wedge \mathrm{C}=\mathrm{Beach} \wedge \mathrm{D}=$ Refrigerator $\wedge \mathrm{E}=$ Air Conditioning.

OWL1: $\mathrm{Q}(\mathrm{X})<-$ Category-Bangalow $(\mathrm{X}) ~ \Lambda$ hasRate $(\mathrm{X}, \mathrm{A}) \wedge$ hasFacility $(\mathrm{X}, \mathrm{B}) \wedge$ hasAccommodationFacility $(\mathrm{X}, \mathrm{C}) \wedge$ hasAccommodationFacility $(\mathrm{X}, \mathrm{D}) \wedge \mathrm{A}=$ Room_Rate_2 $\wedge \mathrm{B}$ $=$ Beach $\wedge C=$ Refrigerator $\wedge D=$ Air Conditioning.

แปลงเป็นมุมมองของ DL
( (Bangalow $\boldsymbol{\Pi}((\exists$ hasRate $\{$ Room Rate 2$\}) \Pi$
$(\exists$ hasAccommodationFacility $\{$ Beach $\}) \Pi$
( $\exists$ hasAccommodationEacility \{Refrigerator \} ) $\Pi$
( $\exists$ hasAccommodationFacility \{Air Conditioning?)


ภาพที่ 29 แสดงกราฟคิวรีระดับที่ 1

คิวรีระดับที่ 2 ค้นหาบังกะโลที่อยู่ใกล้หาดหัวหินบนถนนสายหัวหิน-ตะเกียบ ที่มีเครื่องอำนวยความสะดวกเช่นตู้เย็นและเครื่องปรับอากาศในห้องพักราคาระดับที่ 2

กฎที่ใช้ในการค้นหา
SQL2: $\mathrm{Q}(\mathrm{X})<-\operatorname{Accommodation(X)} \wedge$ hasLocation $(\mathrm{X}, \mathrm{A}) \wedge$ hasRate $(\mathrm{X}, \mathrm{B}) \wedge$ hasCategory $(\mathrm{X}, \mathrm{C}) \wedge$ hasAccommodationFacility $(\mathrm{X}, \mathrm{D}) \wedge$ hasAccommodationFacility $(\mathrm{X}, \mathrm{E}) \wedge$ hasFacility $(\mathrm{X}, \mathrm{F}) \wedge \mathrm{A}=$ HuaHin-Takiab Road $\wedge \mathrm{B}=$ Room_Rate_2 $\wedge \mathrm{C}=$ Category_Bangalow $\wedge$ $\mathrm{D}=$ Beach $\Lambda \mathrm{E}=$ Refrigerator $\Lambda \mathrm{F}=$ Air Conditioning.

OWL2: $\mathrm{Q}(\mathrm{X})<-$ Category-Bangalow $(\mathrm{X}) \wedge$ hasLocation $(\mathrm{X}, \mathrm{A}) \wedge$ hasRate $(\mathrm{X}, \mathrm{B})$ $\Lambda$ hasFacility $(\mathrm{X}, \mathrm{C}) \wedge$ hasAccommodationFacility $(\mathrm{X}, \mathrm{D}) \wedge$ hasAccommodationFAcility $(\mathrm{X}, \mathrm{E}) \wedge$ A=HuaHin-Takiab Road $\wedge \mathrm{B}=$ Room_Rate_2 $\wedge \mathrm{C}=$ Beach $\wedge \mathrm{D}=$ Refrigerator $\Lambda \mathrm{E}=$ Air Conditioning.

แปลงเป็นมุมมองของ DL
( (Bangalow $\boldsymbol{\Pi}(\exists$ hasLocation \{ HuaHin-Takiab Road\}) $\boldsymbol{\Pi}$
$(\exists$ hasRate $\{$ Room Rate 2$\}) \Pi$
( $\exists$ hasAccommodationFacility $\{$ Beach $\}$ ) $\Pi$
( $\exists$ hasAccommodationFacility \{Refrigerator \}) $\Pi$
( $\exists$ hasAccommodationFacility \{Air Conditioning \}))


ภาพที่ 30 แสดงกราฟคิวรีระดับที่ 2

คิวรีระดับที่ 3 ค้นหาโรงแรมที่อยู่ใกล้หาดหัวหินในชุมชนแนบเคหาสน์ ที่มี ห้องพักราคาระดับที่ 1 และมีร้านนำชัยเกี๊ยวปลาและภัตตาคารอยู่เย็นอยู่ในบริเวณเดียวกัน กฎที่ใช้ในการค้นหา

SQL3: $\mathrm{Q}(\mathrm{X})<-$ Accommodation $(\mathrm{X}) \wedge$ hasLocation $(\mathrm{X}, \mathrm{A}) ~ \wedge$ hasLocation $(\mathrm{X}, \mathrm{V})$
$\Lambda$ hasLocationAttraction (V,B) $\wedge$ hasLocationAttraction (V,C) $\wedge$ hasRate(X,D)
\hasCategory (X,E) $\wedge$ hasAccommodationFacility (X,F) $\wedge \mathrm{A}=$ Naebkehad $\wedge$
$B=$ Num_chai_Kaew_Pla $\wedge C=$ Yoo_Yen_Restuarant $\Lambda D=$ Room_rate_1 $\wedge$
$\mathrm{E}=$ Category_Hotel $\Lambda \mathrm{F}=$ Beach
OWL3: $\mathrm{Q}(\mathrm{X})<-$ Category-Hotel( X ) $\wedge$ hasLocation $(\mathrm{X}, \mathrm{A}) \wedge$ hasLocationAttraction $(\mathrm{X}, \mathrm{B}) \wedge$ hasLocationAttraction $(\mathrm{X}, \mathrm{C}) \wedge$ hasRate $(\mathrm{X}, \mathrm{D}) \wedge$ hasAccommodationFacility $(X, F) \wedge \mathrm{A}=$ Naebkehad $\wedge \mathrm{B}=$ Num_chai_Kaew_Pla $\wedge$ C $=$ Yoo_Yen_Restuarant $\Lambda \mathrm{D}=$ Room_Rate_1 $\Lambda \mathrm{F}=$ Beach

แปลงเป็นมุมมองของ DL


ภาพที่ 31 แสดงกราฟคิวรีระดับที่ 3

คิวรีระดับที่ 4 ค้นหาที่พักแรมแบบบังกะโล ราคาที่พักระดับ 4 มีสิ่งอำนวย ความสะดวกคือ สวน และอยู่ใกล้ชายทะเล อยู่ใกล้สถานที่เที่ยวแบบแหล่งอาหารในชุมชนตะเกียบ กฎที่ใช้ในการค้นหา
RDB4: $\mathrm{Q}(\mathrm{X})<-\operatorname{Accommodation}(\mathrm{X}) \wedge$ hasLocation $(\mathrm{X}, \mathrm{A}) \wedge$ hasLocation $(\mathrm{X}, \mathrm{V}) \wedge$ hasLocationClassification( $(\mathrm{V}, \mathrm{B}) \wedge$ hasRate $(\mathrm{X}, \mathrm{C}) \wedge$ hasCategory $(\mathrm{X}, \mathrm{D}) \wedge$ hasAccommodationFacility (X,E) $\wedge$ hasAccommodationFacility $(\mathrm{X}, \mathrm{F}) \wedge \mathrm{A}=$ Takiab $\wedge \mathrm{B}=$ Classification_FoodCourse $\wedge \mathrm{C}=$ Room rate_4 $\wedge \mathrm{D}=$ Category_Bangalow $\Lambda \mathrm{E}=$ Garden $\Lambda \mathrm{F}=$ Beach.

OWL4: $\mathrm{Q}(\mathrm{X})<-$ Category-Bangalow ( X ) $\wedge$ hasLocation $(\mathrm{X}, \mathrm{A})$
\hasLocationClassification $(\mathrm{X}, \mathrm{B}) \wedge \operatorname{hasRate}(\mathrm{X}, \mathrm{C}) \wedge$ hasAccommodationFacility $(\mathrm{X}, \mathrm{E})$
\hasAccommodationFacility(X,F) $\wedge \mathrm{A}=$ Takiab $\wedge \mathrm{B}=$ Classification_FoodCourse $\wedge \mathrm{C}=$ Room_rate_4 $\Lambda \mathrm{E}=$ Garden $\Lambda \mathrm{F}=$ Beach.

แปลงเป็นมุมมองของ $D L$
( (Bangalow $\boldsymbol{\Pi}(\exists$ hasLocation \{Takiab\}) $\boldsymbol{\Gamma}$ ( $\exists$ hasRate $\{$ Room Rate 4\}) П
hasAccommodationFacility \{Beach \})hasAccommodationFacility $\{$ Garden $\}) \Pi$hasLocationClassification\{Classification_FoodCourse\}))


ภาพที่ 32 แสดงกราฟคิวรีระดับที่ 4

คิวรีระดับที่ 5 ค้นหาโรงแรมที่ตั้งอยู่บนถนนเพชรเกษม ริมหาดหัวหิน ใกล้ พระราชวังไกลกังวล แหล่งอาหารและซื้อของ ราคาห้องพักระดับที่ 1 รวมถึงมีบริการนวดแผนไทย กฎที่ใช้ในการค้นหา

RDB5:
$\mathrm{Q}(\mathrm{X})<-\operatorname{Accommodation}(\mathrm{X}) \wedge$ hasLocation $(\mathrm{X}, \mathrm{A}) \wedge$
hasLocation( $\mathrm{X}, \mathrm{V}$ ) $\wedge$ hasLocationClassification( $\mathrm{V}, \mathrm{B}$ ) $\wedge$
hasLocationClassification(V,C) $\wedge$ hasRate $(\mathrm{X}, \mathrm{D}) \wedge$
hasCategory $(\mathrm{X}, \mathrm{E}) ~ \Lambda$ hasAccommodationFacility $(\mathrm{X}, \mathrm{F}) ~ \wedge$
hasAccommodationFacility $(\mathrm{X}, \mathrm{G}) ~ \wedge$ hasLocationAttraction( $\mathrm{V}, \mathrm{H}$ ) $\wedge$
A $=$ Petkasem_Road $\Lambda B=$ Classification_FoodCourse $\Lambda$
$\mathrm{C}=$ Classification_Shopping $\Lambda \mathrm{D}=$ Room_rate_1 $\wedge$
E=Category_Hotel $\Lambda \mathrm{F}=$ Garden $\Lambda$
$\mathrm{G}=$ Beach $\Lambda \mathrm{H}=$ Klai_Kangwon_Huahin_Palace.
OWL5:
$\mathrm{Q}(\mathrm{X})<-$ Category - Hotel ( X ) $\wedge$ rasLocation( $\mathrm{X}, \mathrm{A})$
$\Lambda$ hasLocationClassification (X,B) $\wedge$ hasLocationClassification $(\mathrm{X}, \mathrm{C}) \wedge$
hasRate (X,D) $\wedge$ hasAccommodationFacility $(\mathrm{X}, \mathrm{F}) \wedge$
hasAccommodationFacility (X,G) $\wedge$ hasLocationAttraction $(\mathrm{X}, \mathrm{H}) \wedge$
A $=$ Petkasem_Road $\Lambda B=$ Classification_FoodCourse $\Lambda$
C= Classification_Shopping $\Lambda D=$ Room_rate_1 $\Lambda$
$\mathrm{F}=$ Garden $\wedge \mathrm{G}=$ Beach $\wedge$
H= Klai_Kangwon_Huahin_Palace.
แปลงเป็นมุมมองของ DL
((Hotel $\Pi(\exists$ hasLocation\{Petkasem_Road\}) $\Pi$hasRate $\{$ Room Rate 1\}) IIhasAccommodationFacility \{Beach \}) $\Pi$
( $\exists$ hasAccommodationFacility \{Thai_Massage \}) $\Pi$
( $\exists$ hasLocationAttraction \{ CKlai_Kangwon_Huahin_Palace \}) II
( $\exists$ hasLocationClassification \{ Classification_FoodCourse \}) $\Pi$hasLocationClassification \{ Classification_Shopping \}))


ภาพที่ 33 แสดงกราฟคิวรีระดับที่ 5

การวัดค่าความซับซ้อนของคิวรีวัดร่วมกับการจับเวลาระหว่างเครื่องที่ 1 ใช้ Intel (R) CPU T2050 1.60 GHz; 798 MHz; memory: 0.99 GB hard disks: 80GB 32-bit Operating System running Window XP Professional และเครื่องที่2 ใช้ Intel (R) Core(TM) i5 CPU M430 2.27 GHz ; memory: 4GB hard disks: 320GB 64-bit Operating System running Window 7 Home Premium

ซอฟต์แวร์ทั้งสองเครื่องคือ Apache Web Server 2.2.8, MySQL Database 5.0.51b, phpMyAdmin Database Manager 2.10.3. Protégé 3.3.1.RacerPro 1.9.0 เป็น reasoner และใช้ Java 1.6.0_18 แล้วจึงทำการวัดค่าความซับซ้อนของคิวรีตามนิยามของวาร์ดีและทฤษฎีบท ของคาลวาเนส
4. การปรับออนโทโลยีของการท่องเที่ยวในอำเภอหัวหินให้มีความซับซ้อนมากขึ้นเพื่อการรียูส และใช้งานร่วมกันระหว่างออนโทโลยี

แผนภาพที่ 34 แสดงออนโทโลยีที่ได้รับการปรับปรุงจากภาพที่ 28 และการศึกษา ออนโทโลยีที่เกี่ยวข้องในบทที่ 2 ซึ่งสามารถดูวิธีการออกแบบอย่างละเอียดได้ดังภาคผนวก ฉ และ ดูการตั้งเงื่อนไขของ OWL-DL ได้ในภาคผนวก ง ภาษาเชิงความหมาย


ภาพที่ 34 ส่วนหนึ่งของออนโทโลยีของการท่องเที่ยวอำเภอหัวหินที่สร้างจาก Protégé 3.3.1

## 5. เปรียบเทียบค่า OWL DL Expressivity

ออนโทโลยีที่สร้างให้ครอบคลุมทุกด้านของการท่องเที่ยวอำเภอหัวหินนั้นมีจำนวน ของคลาส คุณสมบัติ ที่มากขึ้นตามรายละเอียดในตารางดังนี้ โดยได้จากการใช้งานฟังก์ชัน Metrics ของโปรแกรม Protégé 3.3.1

ตารางที่ 15 การเปรียบเทียบค่าจำนวนคลาส คุณสมบัติและOWL DL Expressivity


ตารางที่ 15 (ต่อ)

| Order | Metrics | OWL ภาพที่ 28 | OWL ภาพที่ 35 |
| :---: | :---: | :---: | :---: |
|  | Existential | 0 | 5 |
|  | Universal | 0 | 9 |
|  | Cardinality | 0 | 8 |
|  | MinCadinality | 0 | 10 |
|  | MaxCadinality | 0 | 2 |
|  | HasValue | 41 | 11 |
| 2 | Properties |  |  |
|  | Total | 16 | 44 |
|  | Object | 16 | 44 |
|  | Datatype | 10 | 70 |
|  | Annotation | 0 | 0 |
| $\stackrel{\rightharpoonup}{n}$ | Properties with a domain specified | $25$ | $106$ |
| IN | Properties with a range specified | (15 \ | UG43 G |
|  | Properties with an inverse specified | 16 | 28 |

อธิบายตารางที่ 15 สรุปได้ว่าออนโทโลยีที่สร้างใหม่มีค่าตรรกะ $\mathcal{A L C}$ เป็น $S \mathcal{H O I S N}$ (D) ซึ่งสัมพันธ์กับภาษาย่อยของ OWL คือ OWL-DL ซึ่งมีเงื่อนไขของการเขียนความสัมพันธ์ตาม ทฤษฎีที่ 1 (บทที่ 2) ในรูปกราฟตามนิยามที่ 3 (บทที่ 2 ) ได้ดังข้อ 6 เงื่อนไขที่ใช้ในออนโทโลยี

## 6. เงื่อนไขทั้งหมดที่ใช้ในออนโทโลยี OWL-DL

การแสดงเงื่อนไขทั้งหมดที่ใช้ในออนโทโลยีในภาพที่ 34 คือออนโทโลยีที่ได้รับการ ปรับปรุงแล้วดังตารางที่ 16 ซึ่งสามารถวัดค่าการเปลี่ยนแปลงได้ตามตารางที่ 15 สำหรับการเขียน สัจพจน์ OWL นั้นสอดคล้องกับการตั้งกฎดังต่อไปนี้
subclass: Class1 $\sqsubseteq$ Class2 เขียนได้เป็น Class1 $(\mathrm{x}) \rightarrow \mathrm{Class} 2(\mathrm{x})$
subclass: Property1 $\preceq$ Property2 เขียนได้เป็น Property1 $(\mathrm{x}, \mathrm{y})->\operatorname{Property2}(\mathrm{x}, \mathrm{y})$
$\exists$ livesIn. $\exists$ locatedIn.AmphoeHuaHin $\sqsubseteq ~ H u a H i n C i t i z e n ~ เ ข ี ย น ไ ด ้ เ ป ็ น ~$
 เนื่องจากในการพัฒนาออนโทโลยีโดยใช้โปรแกรม Protégé 3.3.1 นั้นสร้างประโยค เงื่อนไขที่เรียกว่า Restriction ขึ้นมาตามมุมมองของสัจพจน์ OWL สามารถนำมาแสดงได้ดังตาราง ที่ 16 และสามารถอ่านรายละเอียดได้ในภาคผนวก ง ภาษาเชิงความหมาย ตารางที่ 16 รีสตริกชันที่ใช้ในออนโท โลยีการท่องเที่ยวที่ผ่านการปรับปรุงแล้ว

| Class/SubClass | OWL axioms / Class Constructors |
| :---: | :---: |
| Accommodation | subclass: Category $\sqsubset$ Accommodation |
|  | cardinality restriction: $\geq 1$ hasCategory.Category |
|  | cardinality restriction: $\geq 1$ hasFacility.Facility |
|  | cardinality restriction: $\geq 1$ hasRoom.RoomFacility |
|  | $\forall$ (hasPrice.AccommodationPrice or hasPrice.AccommodationPriceRate) |
|  | $\exists$ hasRoom.Guestroom |
| Bangalow | $\ni$ hasCategory.Bangalow, [Inherited from Accommodation] |
| BedAndBreakfast | Э hasCategory.BedAndBreakfast,[Inherited from Accommodation] |
| Camp | $\ni$ hasCategory.Camp, [Inherited from Accommodation〕 |
| Chalet | $Э$ hasCategory.Chalet,[Inherited from Accommodation] |
| Cottage | Э hasCategory.Cottage, [Inherited from Accommodation] |
| Guesthouse | $Э$ hasCategory.Guesthouse, [Inherited from Accommodation] |
| Hostel | $Э$ hasCategory.Hostel, [Inherited from Accommodation] |
| Hotel | $Э$ hasCategory.Hotel, [Inherited from Accommodation] |
| Others | $Э$ hasCategory.Others, [Inherited from Accommodation] |
| Resort | $\ni$ hasCategory.Resort, [Inherited from Accommodation] |
| BedFacility | $=1$ description.String |
|  | =1numPeople.int |
| DoubleBed | $\geq 1$ quantity.int |
| SingleBed | $=1$ quantity.int |
| Location | $\leq 1$ isInLocation(Location or LocationType) |

ตารางที่ 16 (ต่อ)

| Concept/SubClass | Rule |
| :---: | :---: |
| PostalAddress | $\exists$ hasLocationType.LocationType |
| DateTimePeriod | $\geq 1$ hasDatePeriod.DatePeriod |
|  | $\geq 0$ hasSeason.Season |
|  | $\geq 1$ hasTimePeriod.TimePeriod |
| Month | \{January,February,March,April,May,June,July,August,September, October,November,December\} |
| OpeningHours | $=1$ hasContent.Event |
|  | $\forall$ hasPeriod(DatePeriod or DateTimePeriod).Period |
| OpeningHours | $\exists$ hasPeriod(DatePeriod or DateTimePeriod).Period |
| OpeningHours | $=1$ isInSite.Site |
| Season | \{Summer, Rain, Winter\} |
| Weekday <br> Site | Monday, Sunday,Wednesday, Thursday, Friday,Tuesday,Saturday <br> $\forall$ hasOpeningHours.OpeningHours |
| Province | $\forall$ isInLocation.Country |
| Amphoe | $\forall$ isLocalityOf.Province |
| Tumbon | $\forall$ isLocalityOf.Amphoe |
| Price | $=1$ hasCurrency.Currency |
|  | $=1$ hasCurrency |
| Transportaation | $=2$ isBetweenTerminal.TeminalInfrastructure |
| QuietDestination | $\neg$ Entertainment |
| CuturalAttraction | $\exists$ has Attraction(Cultural,Religion) |

นอกจากกฎเหล่านี้แล้วมีรายละเอียดของกฎที่เขียนในรูปของโค้ดภาษา OWL ดัง ภาคผนวก ง ภาษาเชิงความหมาย

## 7. การเขียนโปรแกรมเพื่อการจัดการข้อมูลเมตาดาตา

ขั้นตอนการจัดการเมตาดาตา เป็นการเพิ่มอินสแตนซ์แก่ออนโท โลยีฝั่งเซิร์ฟเวอร์เพื่อใช้ ในการค้นหาและเพิ่มรายละเอียดแท็กเมตาดาตาให้แก่ไฟล์ของไคลเอนท์เพื่อว่าในอนาคตหากมีการ ติดต่อไฟล์เหล่านี้จากโฮตส์ เซิร์ฟเวอร์จะสามารถเข้าใจความหมายของเว็บนั้นจากแท็กเมตาดาตา RDF ได้เลย การทำงานคือ ดาวน์โหลดเว็บจากเว็บไซต์ที่ต้องการเพิ่มข้อมูลก่อน จากนั้นจึงทำการ เพิ่มข้อมูลตามคุณสมบัติของคลาสที่ตั้งไว้ แล้วอัพโหลดไฟล์คืนโฮตส์ ดังแผนภาพที่ 35 แสดงการ ทำงานของผู้ดูแลระบบในการเพิ่มเมตาดาตา


ภาพที่ 35 แผนผังแสดงการทำงานของผู้ดูแลระบบในการเพิ่มเมตาดาตา
สำหรับขั้นตอนการเลือกออนโทโลยีในเซิร์ฟเวอร์ตามโดเมนที่ต้องการอัพเดตนั้น ผู้ใช้ กลุ่มผู้ดูแลระบบต้องทำการตั้งค่าคอนฟิกและเพิ่มตามคุณสมบัติดาต้าไทป์ ซึ่งมีหน้าจอการทำงาน ดังภาพที่ 36 การทำงานเป็นดังนี้ ผู้ใช้ตั้งค่าของไฟล์ออนโทโลยีตามโดเมนที่ใช้ในออนโทโลยีด้าน การท่องเที่ยวโดยตั้งชื่อโดเมนที่ใช้เช่นโดเมน Accommodation โดเมน Contact Data เป็นต้น จากนั้นระบุที่อยู่ของไฟล์โดเมนใน Server แล้วกดปุ่ม Set หากไม่ต้องการตั้งค่าให้กดปุ่ม Reset


| ID | Ontology Name | Location in Serwer | File Name |
| :---: | :---: | :---: | :---: |
| 1 | Accommodation |  | Accommodationow |
| 2 | 2etivty |  | Activity.owl |
| 3 | Natraction |  | Atraction,ow |
| 4 | Contactoata |  | CoctictData.ow |
| 5 | Event |  | Evertionl |
| 6 | Faclity |  | Faciliyow |
| 7 | Location |  | Locationiond |
| 8 | Period |  | Periodion |
| 9 | OtherOtierta |  | cherciteriaonl |
| 10 | Ste |  | Ste.ond |
| 11 | Subsidary |  | Sebaddaryoul |


| Sen cricflome |  |  |
| :---: | :---: | :---: |
| Insert to antofle. XO |  |  |
| ID | 12 |  |
| Domain | Frad |  |
| UrPath | Hix mita tim |  |
|  | 5 sal | Ames |

ภาพที่ 36 หน้าจอการตั้งค่าคอนฟิกของ OWL

การเพิ่มรายละเอียดเมตาดาตาผ่านแอพพลิเคชันมีการเขียนโปรแกรมในส่วนนี้ดังภาพที่ 37 หน้าจอการเพิ่มอินสแตนซ์ของโดเมน Accommodation ผ่านเว็บแอพ-พลิเคชันที่สร้างขึ้น


ภาพที่ 37 ส่วนการเพิ่มข้อมูลในโดเมน Accommodation


ภาพที่ 38 หลังจากเพิ่มข้อมูลจะปรากฏรายละเอียดที่เพิ่มแล้วด้านบน

ที่มาของรายละเอียดที่ใช้เพิ่มข้อมูลมาจากเว็บไซต์หลักจากเทศบาลอำเภอหัวหินใน สืวนข้อมูลที่ต้องการอัพดตตได้ด้นหาจากเว็บไซต์ที่มีอยู่ดังตัวอย่างในตารางซึ่งสามารถดูรยชชื่อ ทั้งหมดได้ในภาคผนวก ค ข้อมูลที่ใช้ในงานวิจัย

ตารางที่ 17 เว็บไซต์ส่วนหนึ่งที่ใช้ค้นหาข้อมูลมาใส่ออนโทโลยี

| Name | Website |
| :--- | :--- |
| A \& B Hotel | www.abguesthouse.com |
| Air Force Resident Borfai | www.borfai-rtaf.com |
| AKA Hotel Resort \& Spa | http//www.akaresorts.com |
| Amara Inn | $\mathrm{http}: / /$ www.amara-huahin.com/ |
| Anantara Hua Hin Resort \& Spa | $\mathrm{http}: / / \mathrm{huahin} . a n a n t a r a . c o m /$ default.aspx |
| Araya Residence | $\mathrm{http} / /$ www.araya-residence.com |

## 8. การเขียนโปรแกรมเพื่อค้นหาข้อมูล

วิธีการค้นหาข้อมูลที่ใช้ในการวิจัยนั้นใช้รูปแบบของ LARQ มาใช้ในการเขียน โปรแกรมโดยแบ่งการค้นหาเป็น 2 แบบคือการค้นหาโดยใช้คำสำคัญและการค้นหาแบบก้าวหน้า ตามคลาส โดยเฉพาะ วิธีการค้นหาข้อมูลที่ใช้ในการวิจัยสามารถอธิบายด้วยภาพที่ 39 ควบคู่ไปกับ ภาพที่ 40 ถึง 42 โดยเริ่มที่ผู้ใช้เลือกว่าต้องการค้นหาตามคำสำคัญดังภาพที่ 40 หรือค้นตามคลาสดัง ภาพที่ 41


ภาพที่ 39 วิธีการค้นหาตั้งแต่เริ่มรับข้อมูลเพื่อค้นหาและแสดงผลOntology Search

กรณีที่ค้นหาแบบใส่คำสำคัญดังภาพที่ 40 ให้ใส่คำสำคัญแล้วกดปุ่ม Search หาก ต้องการค้นหาแบบก้าวหน้าให้คลิกที่ Ontology Search จะปรากฏหน้าจอขยายดังภาพที่ 41 ซึ่งผู้ใช้ เลือกค้นหาตามคลาสที่ต้องการแล้วคลิกปุ่ม Search ด้านล่างจะปรากฏผลลัพธ์ดังภาพที่ 42


ภาพที่ 41 หน้าจอแสดงการค้นหาตามคลาสและคุณสมบัติ


ภาพที่ 42 การแสดงผลลัพธ์และเวลาที่ใช้ค้นหา

## 9. การค้นหาข้อมูลจากผู้ใช้งานและการตรวจสอบคิวรีตามเงื่อนไขที่ตั้งไว้

การตรวจสอบคิวรีโดยทำการค้นหาข้อมูลตามออนโทโลยีที่สร้างครอบคลุมกฎภาษา OWL DL สามารถแบ่งการคิวรีที่ผู้ใช้ใช้งานได้ 3 แบบประกอบด้วยการค้นหาแบบใช้คำสำคัญ การ ค้นหาแบบ Top-Down และการค้นหาแบบ Bottom-Up โดยวัดค่าเวลาที่ใช้ในการค้นหาไว้ การค้นหาแบบใส่คำสำคัญ ในกรณีที่ผู้ใช้ทราบคำสำคัญสามารถเพื่อค้นหารายละเอียด โดยวิธีนี้โดยมีหน้าจอเป็นดังภาพที่ 40

การคิวรีแบบ Top-Down คือผู้ใช้ใส่ข้อมูลเพื่อค้นหาที่พักแรม โดยระบุสิ่งอำนวยความ สะดวกตามที่ต้องการทั้งของห้องพัก หรือหากเป็นผู้ที่หาที่ประชุมหรือสัมมนาสามารถระบุสิ่ง อำนวยความสะดวกในห้องประชุมได้ อาจมีการระบุราคาตามงบประมาณที่ต้องการทั้งแบบช่วง ราคาตามนโยบายของการท่องเที่ยวแห่งประเทศไทยกำหนดไว้ 5 ระดับหรือเลือกราคาเริ่มต้นจาก ข้อมูลที่มีอยู่ในที่พักแรม สามารถเลือกการแสดงผลลัพธ์ได้โดยมีค่าปกติอยู่ที่ชื่อที่พักแรมและชื่อ สถานที่ตั้งเพื่อช่วยให้ผู้ใช้ตรวจสอบว่าอยู่ในบริเวณที่ต้องการหรือไม่ ผลลัพธ์ที่ได้จึงเป็นชื่อที่พัก แรม สถานที่ตั้ง และเลือกแสดงราคา รายละเอียด เว็บไซต์และรูปภาพได้

การคิวรีแบบ Bottom-Up คือผู้ใช้ระบุสถานที่ที่ต้องการไปท่องเที่ยวหรือสถานที่ที่มี
 อยู่ใกล้เคียง

วิธีทำการทดสอบคิวรียกตัวอย่างการค้นหาแบบ Top-Down คือปัญหาการหาที่พักแรม ของนักท่องเที่ยว Backpacker ซึ่งต้องการค้นหาที่พักแรมราคาประหยัด มีกิจกรรมเฉพาะด้านกีฬา และด้านการผจญภัย

แนวทางแก้ปัญหา: กำหนดให้ BudgetHotel เป็นที่พักแรมแบบประหยัดที่มีราคาอยู่ ในช่วงระดับที่สาม $1,000-1,499$ บาทดังนั้น

BudgetHotel $\equiv$ Accommodation $\Pi\{\exists$.hasPriceRate.Price-Rate-3\}
กำหนดให้ BackpackerAccommodation เป็นที่พักแรมเป้าหมายที่เป็นคำตอบของ นักท่องเที่ยวแบบสะพายเป้ เงื่อนไขการคิวรีเป็นดังนี้

BackpackerAccommodation $\equiv$ BudgetHotel $\Pi$
( $\exists$.hasActivity \{.Sports $\amalg$.Adventure $\}$ )
BackpackerAccommodation $\equiv$ Accommodation $\Pi\{\exists$.hasPriceRate.Price-Rate-3\} $\Pi$
( $\exists$.hasActivity $\{$ Sports $\amalg$ Adventure $\}$ )
กราฟของ RDF/OWL ตามกำหนดการเดินทางของคิวรี SPARQL เป็นดังภาพที่ 44


ภาพที่ 43 กราฟของ RDF/OWL ตามหลักตรรกะของ OWL DL

อธิบายภาพที่ 43 เป็นขั้นตอนการค้นหาของประโยคตรรกะที่ตั้งไว้รูปกราฟ OWL ที่เริ่ม จากการตั้ง owl:equivalentClass เพื่อให้เกิดการ imply เพื่อหาคำตอบของปัญหาการค้นหาที่พักแรม ราคาประหยัดพร้อมกิจกรรมด้านกีฬาและผจญภัยของนักเดินทางสะพายเป้ โดยปัญหานี้เป็นสับ คลาสของ owl:Thing และใส่ owl:equivalentClass เพื่อหาคำตอบ ขั้นต่อมาเป็นowl:IntersectionOf ทั้งสามประโยคเมื่อค้นลงไปจะพบ owl:Restriction ที่ประกอบด้วย owl:someValuesFrom ของ คุณสมบัติต่างๆ โดยมี rdf:first ที่เป็นอินสแตนซ์ของ rdf:Property ทำหน้าที่นำประโยคแรกไป ประมวลผลและส่วนที่เหลือให้ rdf:rest จัดการไปเรื่อยๆ จนหมดรัพยากรจากนั้นบันทึกเวลาที่ใช้ ประมวลผลในแต่ละขั้นตอนเพื่อวิเคราะห์ ซึ่งการตั้งประโยคคิวรีของ SPARQL ก็ใช้วิธีเดินทางตาม กราฟ OWL เช่นกัน

## 10. การทดสอบการใช้งานโปรแกรมโดยกลุ่มตัวอย่าง

การทดสอบการใช้งานโปรแกรมโดยกลุ่มตัวอย่างเป็นขั้นตอนการนำโปรแกรมที่พัฒนา มาทดลอง โดยให้กลุ่มตัวอย่างทดลองใช้ มีวิธีการดำเนินการตามขั้นตอนดังต่อไปนี้

## 10.1 การเลือกกลุ่มตัวอย่าง

การเลือกกลุ่มตัวอย่างในการทดสอบในครั้งนี้ได้ทำการสำรวจจากผู้ที่เคยใช้การ ค้นหาและจองโรงแรมผ่านอินเตอร์เน็ต

## 10.2 เครื่องมือและวิธีการในการสุ่มตัวอย่าง

ในการทดสอบครั้งนี้ ผู้วิจัยได้สร้างเครื่องมือเพื่อวัดผลการใช้โปรแกรม คือ แบบสอบถาม (Questionnaires) ที่สร้างขึ้นเองจากการศึกษา แนวคิด ทฤษฎี และงานวิจัยที่เกี่ยวข้อง โดยแบ่งออกเป็น 3 ตอนคือ

ตอนที่ 1 ข้อมูลเบื้องต้นของผู้ตอบแบบสอบถาม เป็นคำถามแบบเลือกตอบ (Checklist) และเป็นตัวแปรทั้งชนิด Nominal, Ordinal ได้แก่ เพศ อายุ ระดับการศึกษา อาชีพ

ตอนที่ 2 ข้อมูลด้านการใช้อินเตอร์เน็ตของผู้ตอบแบบสอบถาม แสดงถึงลักษณะ การใช้งานระบบเครือข่ายอินเตอร์เน็ตโดยทั่วไป

ตอนที่ 3แบบประเมินความพึงพอใจต่อเครื่องมือค้นหาเว็บซต็โดยใช้เว็บเชิง ความหมาย กรณีศึกษาเว็บสารสนเทศการท่องเที่ยว ที่ให้บริการในการค้นหาข้อมูลเกี่ยวกับที่พัก แรมและสถานที่ท่องเที่ยวของอำเภอหัวหิน แสดงถึงระดับความพึงพอใจของกลุ่มตัวอย่างจากการ ใช้โปรแกรม เป็นแบบสอบถามแบบมาตราส่วนประมาณ (Rating Scale) ตามแบบของลิเคิร์ท (Likert Scale) โดยให้การแบ่งการวัดระดับความพึงพอใจออกเป็น 5 ระดับ คือ

| มากที่สุด | 5 คะแนน |
| :--- | ---: |
| มาก | 4 คะแนน |
| ปานกลาง | 3 คะแนน |
| ไม่ค่อยพอใจ | 2 คะแนน |
| ไม่พอใจ | 1 คะแนน |

วิธีการแปลผลจากคะแนนระดับความพึงพอใจจะพิจารณาจากคะแนนเฉลี่ยในแต่ ละด้านของความพึงพอใจ ทั้งนี้ได้แบ่งระดับเป็น 5 ระดับ โดยมีรายละเอียดดังนี้ สูตรการคำนวน (การวิเคราะห์ข้อมูลทางสถิติด้วยคอมพิวเตอร์, ศิริชัย พงษ์วิชัย,

$$
\begin{aligned}
\text { พิสัย } & =\frac{\text { คะแนนสูงสุด }- \text { คะแนนต่ำสุด }}{\text { จำนวนอันตราภาคชั้น }} \\
& =(5-1)
\end{aligned}
$$

5
$=0.80$
ซึ่งทำให้วิเคราะห์ระดับความพึงพอใจจะมีชั้นของคะแนนเฉลี่ย คือ
ไม่พอใจ จากเกณฑ์ $1.00-1.80$
ไม่ค่อยพอใจ จากเกณฑ์ 1.81-2.60
ปานกลาง จากเกณฑ์ 2.61-3.40
มาก จากเกณฑ์ 3.41-4.20
มากที่สุด จากเกณฑ์ 4.21-5.00
ใช้วิธีการสุ่มตัวอย่างตามความสะดวก (Convenience Sampling) โดยให้กลุ่ม ตัวอย่างทดสอบการใช้โปรแกรมแล้วทำแบบสอบถามด้วยตนเอง (Self Administrative Interview)

## 10.3 ความถูกต้องและความน่าเชื่อถือของเครื่องมือในการเก็บข้อมูล

 แบบสอบถามไปที่ปรึกษาผู้เชี่ยวชาญทางสถิติ พร้อมทั้งปรับปรุงแก้ไขให้แบบสอบถามชัดเจนและ ครอบคลุมวัตถุประสงค์ของการวิจัยครั้งนี้ และนำแบบสอบถามที่ได้ไปทดสอบความเชื่อมั่น (Reliability) ของเครื่องมือ (Pre-test) กับกลุ่มตัวอย่างจำนวน 30 ตัวอย่าง และคำนวนหาค่าความ เชื่อมั่นด้วยวิธีของ ครอนบาค (Cronbach's Alpha) โดยใช้เกณฑ์ยอมรับที่มีค่ามากกว่า 0.7000 เพื่อ แสดงว่าแบบสอบถามนี้มีความเชื่อมั่นเพียงพอ (การวิจัยและการสืบค้นข้อมูลทางธุรกิจ, วิชิต อู่อ้น, 2548)

จากการทดสอบความเที่ยงตรงของแบบสอบถามกลุ่มตัวอย่างชุดทดสอบ 30 ชุด พบว่ามีค่า $\mathrm{Alpha}=0.9069$ ซึ่งอยู่ในเกณฑ์ที่ยอมรับได้ จึงได้ดำเนินการวิจัยในขั้นตอนการเก็บ รวบรวมต่อไป
10.4 การสร้างเครื่องมือในการเก็บข้อมูล

การทดสอบผลการใช้โปรแกรมครั้งนี้ ใช้แบบสอบถามเป็นเครื่องมือในการเก็บ รวบรวมข้อมูล โดยแต่ละข้อคำถามจะหมายถึงตัวแปรที่จะรวบรวมมาใช้วิเคราะห์ผลการทดสอบ การใช้ไปรแกรม

ในขั้นตอนการเก็บรวบรวมข้อมูล ทำโดยการให้กลุ่มตัวอย่างทดลองการใช้ โปรแกรมเล้วตอบแบบสอบถามเพื่อประเมินผลความพึงพอใจ

## 10.6 วิธีการวิเคราะท์ข้อมูล

เมื่อได้มีการรวบรวมข้อมูลการสำรวจจากกลุ่บตัวอย่างแล้ว ผู้วัองึึงนำความรู้ที่ ได้จากวิธีการในการดำเนินการวิจัย โดยนำข้อมูลดังกล่าวไปทำการวิเคราะห์ทั้งโดยการใช้วิธีการ ทางสถิติ โดยใช้โปปปรแกรมสำเร็รูป SPSS for Windows Version 16.0

## บทที่ 4 <br> ผลการวิเคราห์ข้อมูล

ผลการวิเคราะห์ข้อมูลแบ่งเป็น 3 ส่วน ส่วนที่ 1 เป็นส่วนของผลการทดลองจากการวัด ประสิทธิภาพของคิวรีระหว่างฐานข้อมูลเชิงสัมพันธ์และฐานความรู้ออนโทโลยีที่สร้างขึ้นโดยใช้ แนวคิดเดียวกัน ส่วนที่ 2 เป็นผลการวิเคราะห์ข้อมูลจากการตรวจสอบการค้นหาตาม OWL DL ที่ สร้างขึ้น และส่วนสุดท้ายเป็นการวิเคราะห์ข้อมูลจากการทำแบบสอบถามความพึงพอใจของผู้ใช้ ระบบ

## 1. ผลการทดสอบประสิทธิภาพของคิวรี

ผลการทดสอบประสิทธิภาพของคิวรีภาษา $\operatorname{SQL}$ และ $\operatorname{SPARQL}$ ในด้านความซับซ้อน ของข้อมูดได้ผลดังตารางที่ 18

ตารางที่ 18 ผลการทดสอบประสิทธิจาพการค้นหาระหว่างฐานข้อมูลเชิงสัมพันธ์และออนโทโลยี

| การวัด | $\begin{gathered} \text { \# } \\ \text { เทอม } \end{gathered}$ | $\begin{gathered} \text { \# } \\ \text { จอย } \end{gathered}$ | $X^{5}$ | $\mathrm{V}^{\text {s }}$ | QC |  | ระดับ | ดีกรีQC | \%ลด QC | คำตอบ ต่อ QC | เครื่อง 1 <br> (ms.) | เครื่อง 2 (ms.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RDB1 | 7 | 0 | 2 | $\begin{aligned} & \text { ไม่ } \\ & \text { มี } \end{aligned}$ | 2 | 2 | - | 0.3 | 0 | 1 | 23 | 9.5 |
| OWL1 | 6 | 0 | 2 | $\begin{aligned} & \text { ไม่ } \\ & \text { มี } \end{aligned}$ | 2 | 2 | - | 0.3 |  | 1 | 4.3 | 4.8 |
| RDB2 | 8 | 1 | 2 | 4 | 8 | 2 | 1 | 0.9 | 67 | 0.25 | 24 | 11 |
| OWL2 | 7 | 0 | 2 | $\begin{aligned} & \text { ไม่ } \\ & \text { มี } \end{aligned}$ | 2 | 2 | 1 | 0.3 |  | 1 | 5.4 | 4.9 |
| RDB3 | 9 | 2 | 4 | 5 | 20 | 2 | 1 | 1.3 | 77 | 0.1 | 24 | 12 |
| OWL3 | 7 | 0 | 2 | $\begin{aligned} & \text { ไม่ } \\ & \text { มี } \end{aligned}$ | 2 | 2 | 2 | 0.3 |  | 1 | 5.7 | 5.7 |
| RDB4 | 9 | 2 | 5 | 222 | 1110 | 2 | 1 | 3 | 90 | 0.0018 | 26 | 19 |
| OWL4 | 7 | 0 | 2 | $\begin{aligned} & \text { ไม่ } \\ & \text { มี } \end{aligned}$ | 2 | 2 | 2 | 0.3 |  | 1 | 6.8 | 5.8 |
| RDB5 | 11 | 3 | 6 | 1110 | 6660 | 5 | 1 | 3.8 | 82 | 0.0007 | 48 | 32 |
| OWL5 | 9 | 0 | 5 | $\begin{aligned} & \text { ไม่ } \\ & \text { มี } \end{aligned}$ | 5 | 5 | 3 | 0.7 |  | 1 | 8.8 | 6.6 |

ตารางที่ 18 ประกอบด้วยค่าที่ทำการทดสอบดังต่อไปนี้
1.1 จำนวนเทอม หมายถึง จำนวนเทอมของคิวรีที่ต่อเนื่องกันที่ใช้ในการทดลอง
1.2 จำนวนจอย หมายถึง จำนวนการจอยระหว่างตารางของฐานข้อมูล
$1.3 \mathrm{X}^{\mathrm{s}}$ หมายถึง ตัวแปรแรกจากคอนเซปต์ของวาร์ดี เป็นคำตอบของคิวรีส่วนที่ 1
$1.4 \mathrm{~V}^{\mathrm{s}}$ หมายถึง ตัวแปรที่สองจากคอนเซปต์ของวาร์ดี เป็นคำตอบของคิวรีส่วนที่ 2
1.5 QC ความซับซ้อนของคิวรี เท่ากับ $\mathrm{X}^{\mathrm{s}} * \mathrm{~V}^{\mathrm{s}}$ ในกรณีของ RDB มีการหาคำตอบสอง ครั้งจึงมีค่าทั้งสองตัวแปร ค่า QC จึงเท่ากับจำนวนรอบของการวนซ้ำในการหาคำตอบจากตารางจึง มีค่าเท่ากับนำ $\mathrm{X}^{\mathrm{s}} \mathrm{x} \mathrm{V}^{\mathrm{s}}$ แต่กรณีของ OWL มีค่า $\mathrm{X}^{\mathrm{s}}$ เพียงค่าเดียวเนื่องจากหาคำตอบมีเพียงครั้งเดียว
1.6 จำนวนคำตอบ หมายถึง จำนวนคำตอบของคิวรี
1.7 ระดับ หมายถึง Rank ของกราฟ RDF/OWL
1.8 ดีกรี QC คือระดับความซับซ้อนคิวรีใน LOGSPACE.
$1.9 \%$ ลด QC คือเปอร์เซ็นต์ของการลดระดับความซับซ้อนของคิวรี
1.10 คำตอบต่อ QC คืออัตราส่วนจำนวนคำตอบต่อความซับซ้อนของคิวรี
1.11 เครื่อง 1 (ms.) หมายถึงเวลาที่ใช้ในหน่วยมิลลิวินาทีของเครื่องที่ 1


Hard disks: 80GB 32-bit
Operating System: Window XP Professional
1.12 เครื่อง 2 (ms.) หมายถึงเวลาที่ใช้ในหน่วยมิลลิวินาทีของเครื่องที่ 2

Intel (R) Core(TM) i5 CPU M430 2.27 GHz ; memory: 4GB
Hard disks: 320GB 64-bit
Operating System: Window 7 Home Premium
ซอฟต์แวร์ทั้งสองเครื่องคือ Apache Web Server 2.2.8, MySQL Database5.0.51b, phpMyAdmin Database Manager 2.10.3. Protégé 3.3.1.RacerPro 1.9.0 เป็น Reasoner และใช้ Java 1.6.0_18

เวลาที่ใช้ในการทดสอบคือเวลาที่เริ่มการโหลดข้อมูลเข้าสู่ระบบ จนถึงการรันคิวรีจนกระทั่งได้รับคำตอบออกมา โดยวัดค่าจนมีความเสถียรระดับหนึ่งจึงเริ่มบันทึกข้อมูล

## 2. ผลการวิเคราะห์ข้อมูลจากการตรวจสอบการค้นหาตาม OWL DL

ตารางที่ 19 การเปรียบเทียบการค้นหาตาม OWL DL

| การค้นหา | Top-Down(ms) | Bottom-Up(ms) |
| :---: | :---: | :---: |
| การค้นหาอินสแตนซ์ทั้งหมดที่มี | 1,496 | 4,420 |
| การค้นหาอินสแตนซ์จากเงื่อนไขที่มีตัวบ่งปริมาณ | 1,108 | 2,366 |
| การค้นหาอินสแตนซ์จากประโยค $\forall$ | 967 | 1,390 |
| การค้นหาอินสแตนซ์จากประโยค $\exists$ | 981 | 3,542 |
| การค้นหาอินสแตนซ์ตามระดับชั้นความสัมพันธ์ | 739 | 276 |
| การค้นหาอินสแตนซ์ตามปัญหาใน equivalentClass | 420 | 900 |
| การค้นหาอินสแตนซ์จากคลาสที่ดิสจอยน์กัน | 584 | 521 |
| การค้นหาอินสแตนซ์ตามคุณสมบัติ | 541 | 511 |
| กรรค้นหาอินสแตนซ์จากโปรเกรมที่สร้างขึ้น | \% 591 | 5 583 |
|  | G UN) | $3 G L 0)$ |

ตารางที่ 19 ประกอบด้วยค่าที่ทำการทดสอบตามคุณสมบัติของ $S \mathcal{H O I N}($ (D) (พื่อให้ ครอบคลุมหลักของ OWL DL ต้องมีการตั้ง class constructor ตามหลัก $\mathcal{A L C}$ แล้วมีการ ใช้เงื่อนไข ต่อไปนี้
2.1 การใช้เงื่อนไขเงื่อนไขที่มีตัวบ่งปริมาณ
2.2 การใช้เงื่อนไขตามระดับชั้นความสัมพันธ์
2.3 การ ใช้เงื่อนไข (In)Equality ซึ่งในที่นี้คือ equivalentClass
2.4 การใช้เงื่อนไขคลาสที่ดิสจอยน์กัน
2.5 การใช้เงื่อนไขตามคุณสมบัติทรานซิทีฟ สมมาตร ฟังก์ชันนัล และอินเวอร์ส ฟังก์ชันนัล

นอกจากนี้มีการค้นหาอินสแตนซ์จากประ โยค $\forall$ และ $\exists$
รวมทั้งจับเวลาค้นหาจากโปรแกรมที่สร้างขึ้นทั้งแบบ Top-Down และ Bottom-Up ใน หน่วยมิลลิวินาที โดยในโปรแกรม Top-Down ใช้ประโยคแบบ Active เพื่อหาอินสแตนซ์ส่วน Bottom-Up ใช้ประโยคแบบ Passive เพื่อค้นหา Class Type

## 3. ผลการทดสอบการใช้งานโปรแกรมโดยกลุ่มตัวอย่าง

จากการวิจัยผู้วัวัยได้พัฒนาการปรับปรุงเครื่องมือค้นหาเว็บไซต์โดยใช้เว็บเชิง ความหมาย กรณีศึกษาเว็บสารสนเทศการท่องเที่ยว อำเภอหัวหิน จ.ประจวบคีรีขันธ์ และนำแบบ สำรวจความพึงพอใจไปทดสอบกับกลุ่มตัวอย่าง เรื่องความพึงพอใจของในการใช้เว็บไซต์ค้นหาที่ พักแรมและสถานที่ท่องเที่ยวในอำเภอหัวหิน จังหวัดประจวบคีรีขันธ์ ซึ่งได้ผลการวิจัยดังนี้ ตอนที่ 1 ข้อมูลทั่วไปของผู้ตอบแบบสอบถาม

ตารางที่ 20 จำนวนและร้อยละของกลุ่มตัวอย่างจำแนกตามเพศ

| เพศ | จำนวน | ร้อยละ |
| :--- | :---: | :---: |
| ชาย | 42 | 42.9 |
| หญิง | 56 | 57.1 |
| รวม | 98 | 100.0 |



ตารางที่ 21 จำนวนและร้อยละของกลุ่มตัวอย่างจำแนกตามอายุ

| อายุ | จำนวน | ร้อยละ |
| :--- | :---: | :---: |
| ต่ำกว่า 21 ปี | 14 | 14.3 |
| $21-30$ ปี | 20 | 20.4 |
| $31-40$ ปี | 39 | 39.8 |
| $41-50$ ปี | 17 | 17.3 |
| 51 ปีขึ้นไป | 8 | 8.2 |
| รวม | 98 | 100.0 |

จากตารางที่ 20 กลุ่มตัวอย่างส่วนใหญ่มีอายุระหว่าง 31-40 ปี จำนวน 39 คน คิดเป็น ร้อยละ 39.8 รองลงมาคืออายุระหว่าง $21-30$ ปี จำนวน 20 คน คิดเป็นร้อยละ 20.4 อายุระหว่าง $41-$ 50 ปี จำนวน 17 คน คิดเป็นร้อยละ 17.3 อายุต่ากว่า 21 ปี จำนวน 14 คน คิดเป็นร้อยละ 14.3 และ

อายุ 51 ปีขึ้นไป จำนวน 8 คน คิดเป็นร้อยละ 8.2

ตารางที่ 22 จำนวนและร้อยละของกลุ่มตัวอย่างจำแนกตามระดับการศึกษา

| ระดับการศึกษา | จำนวน | ร้อยละ |
| :--- | :---: | :---: |
| ต่ำกว่า ปวช. , ม. | 6 | 6.1 |
| ปวช.- ปวส. , ม.6 | 11 | 11.2 |
| อนุปริญญา | 11 | 11.2 |
| ปริญญาตรี | 46 | 46.9 |
| ปริญญาโท | 19 | 19.4 |
| ปริญญาเอก | 5 | 5.1 |
| รวม | 98 | 100.0 |

จากตารางที่ 22 กลุ่มตัวอย่างส่วนใหญ่มีการศึกษาระดับปริญญาตรี จำนวน 46 คน คิด เป็นร้อยละ 46.9 รองลมมาระดับปริญญาโท จำนว่ 19 คน คิดเป็นร้อยละ 19.4 ระดับอนุโริญญา และปวช.-ปวส., ม. 6 จำนวน 11 คนเท่ากัน คิดเป็นร้อยละ 11.2 ตำกว่า ปวช., ม. 3 จำนวน 6 คน คิดเป็นร้อยละ 6.1 และปริญญาเอก จำนวน 5 คน คิดเป็นร้อยละ 5.1

ตารางที่ 23 จำนวนและร้อยละของกลุ่มตัวอย่างจำแนกตามอาชีพ

| อาชีพ | จำนวน | ร้อยละ |
| :--- | :---: | :---: |
| รับราชการ / รัฐวิสากิจ | 13 | 13.3 |
| พนักงานบริษัท | 26 | 26.5 |
| ทำธุรกิจส่วนตัว | 20 | 20.4 |
| นักเรียน / นักศึกษา | 5 | 5.1 |
| รับจ้างทั่วไป | 25 | 25.5 |
| ไม่ได้ทำงาน | 9 | 9.2 |
| รวม | 98 | 100.0 |

จากตารางที่ 23 กลุ่มตัวอย่างส่วนใหญู่เป็นพนักงานบริษัท จำนวน 26 คน คิดเป็นร้อย

ละ 26.5 รองลงมารับจ้างทั่วไป จำนวน 25 คน คิดเป็นร้อยละ 25.5 อาชีพทำธุรกิจส่วนตัว จำนวน 20 คน คิดเป็นร้อยละ 20.4 อาชีพรับราชการ / รัฐวิสากิจ จำนวน 13 คน คิดเป็นร้อยละ 13.3 ไม่ได้ ทำงาน จำนวน 9 คน คิดเป็นร้อยละ 9.2 และเป็นนักเรียน/ นักศึกษา จำนวน 5 คน คิดเป็นร้อยละ 5.1

## ตอนที่ 2 ข้อมูลด้านการใช้อินเตอร์เน็ตของผู้ตอบแบบสอบถาม

ตารางที่ 24 จำนวนและร้อยละของกลุ่มตัวอย่างจำแนกตามลักษณะการใช้งานที่มากที่สุดเมื่อเข้าใช้ งานอินเตอร์เน็ต


จากตารางที่ 24 กลุ่มตัวอย่างส่วนใหญ่มีลักษณะการใช้งนที่มากที่สุดเมื่อเข้างาน อินตตร์เน็ต คือ การสืบค้นข้อมูล จำนวน 26 คน คิดเป็นร้อยละ 26.5 เป็นอันดับหนึ่ง รองลงมาใช้ เพื่อการติดตามข่าวสาร ข่าวออนไลน์ จำนวน 20 คน คิดเป็นร้อยละ 20.4 เป็นอันดับ 2 และ อันดับ 3 คือ รับ-ส่งจดหมายอีเล็กทรอนิกส์ จำนวน 15 คน คิดเป็นร้อยละ 15.4

ตารางที่ 25 จำนวนและร้อยละของกลุ่มตัวอย่างจำแนกตามลักษณะความคิดเห็นต่อความจำเป็นใน การใช้เครื่องมือค้นหาเว็บไซต์ (Search Engine) ในการค้นหาข้อมูลเพื่อวางแผนก่อน การท่องเที่ยวอำเภอหัวหิน จังหวัดประจวบคีรัขันธ์

| ลักษณะความคิดเห็นต่อความจำเป็นในการใช้เครื่องมือ <br> ค้นหาเว็บไซต์ (Search Engine) ในการค้นหาข้อมูลเพื่อ <br> วางแผนก่อนการท่องเที่ยวอำเภอหัวหิน จังหวัด <br> ประจวบคีรันธ์ | จำนวน | ร้อยละ | อันดับ |
| :--- | :---: | :---: | :---: |
| จำเป็น | 96 | 98.0 | 1 |
| ไม่จำเป็น | 2 | 2.0 | 2 |
| รวม | 98 | 100.0 |  |

จากตารางที่ 25 กลุ่มตัวอย่างส่วนมีความเห็นว่ามีความจำเป็น จำนวน 96 คน คิดเป็น ร้อยละ 98.0 และมีความคิดเห็นว่าไม่จำเป็น จำนวน 2 คน คิดเป็นร้อยละ 2.0

ตารางที่ 26 ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานของความคิดเห่นต่อความพึงพอใจของการเข้าใช้
อินเตอร์เน็ต

| ความพึงพอใจของการเข้าใช้อินเตอร์เน็ตในหัวข้อ <br> ต่อไปนี้ | ค่าเฉลี่ย | ส่วนเบี่ยงเบน <br> มาตรฐาน | ความหมาย |
| :--- | :---: | :---: | :---: |
| ใช้เพื่อสืบค้นข้อมูล ข่าวสารทั่วไป | 4.52 | 0.735 | มากที่สุด |
| ใช้เพื่อรับ-ส่งจดหมายหรือข้อมูลอิเล็กทรอนิกส์ | 3.93 | 0.865 | มาก |
| ใช้เพื่อติดต่อสังคมออนไลน์ | 3.71 | 0.760 | มาก |
| ใช้เพื่อสืบค้นข้อมูล เพื่อวางแผนการท่องเที่ยว | 3.91 | 0.788 | มาก |

จากตารางที่ 26 กลุ่มตัวอย่างมีความพึงพอใจในระดับมากที่สุดต่อการเข้าใช้อินเตอร์เน็ต เพื่อสืบค้นข้อมูล ข่าวสารทั่วไป (ค่าเฉลี่ย เท่ากับ 4.52 และส่วนเบี่ยงเบนมาตรฐาน เท่ากับ 0.735 ) มี ความพึงพอใจในระดับมากต่อการเข้าใช้อินเตอร์เน็ตเพื่อรับ-ส่งจดหมายหรือข้อมูลอิเล็กทรอนิกส์ (ค่าเฉลี่ย เท่ากับ 3.93 และส่วนเบี่ยงเบนมาตรฐาน เท่ากับ 0.865 ) มีความพึงพอใจในระดับมากต่อ การเข้าใช้อินเตอร์เน็ตเพื่อติดต่อสังคมออนไลน์ (ค่าเฉลี่ย เท่ากับ 3.71 และส่วนเบี่ยงเบนมาตรฐาน

เท่ากับ 0.760 ) มีความพึงพอใจในระดับมากต่อการเข้าใช้อินเตอร์เน็ตเพื่อสืบค้นข้อมูล เพื่อวาง แผนการท่องเที่ยว (ค่าเฉลี่ย เท่ากับ 3.91 และส่วนเบี่ยงเบนมาตรฐาน เท่ากับ 0.788 )

ตารางที่ 27 จำนวนและร้อยละของกลุ่มตัวอย่างจำแนกตามความคิดเห็นต่อเว็บไซต์ที่ใช้ในการ ค้นหาข้อมูลเกี่ยวกับการท่องเที่ยวที่เข้าใช้บ่อยที่สุด

| เว็บไซต์ที่ใช้ในการค้นหาข้อมูลเกี่ยวกับการท่องเที่ยวที่เข้า <br> ใช้บ่อยที่สุด | จำนวน | ร้อยละ | อันดับ |
| :--- | :---: | :---: | :---: |
| Sanook | 16 | 16.3 |  |
| Google | 60 | 61.2 | 1 |
| Bing | 4 | 4.1 |  |
| Yahoo | 13 | 13.3 |  |
| Kapook | 9 | 5.1 |  |
| รวม | 100.0 |  |  |

จากตารางที่ 27 กลุ่มตัวอย่างส่วนใหญ่ จำนวน 60 คน คิดเป็นร้อยละ 61.2 เลือก Google เว็บไซต์ที่ใช้ในการค้นหาข้อมูลเกี่ยวกับการท่องเที่ยวที่เข้าใช้บ่อยที่สุด

ตารางที่ 28 จำนวนและร้อยละของกลุ่มตัวอย่างจำแนกตามความคิดเห็นต่อเว็บไซต์ที่ใช้ในการ ค้นหาข้อมูลเกี่ยวกับการท่องเที่ยวที่เข้าใช้บ่อยเป็นอันดับ 2

| เว็บไซต์ที่ใช้ในการค้นหาข้อมูลเกี่ยวกับการท่องเที่ยวที่เข้า <br> ใช้บ่อยเป็นอันดับ 2 | จำนวน | ร้อยละ | อันดับ |
| :--- | :---: | :---: | :---: |
| Sanook | 32 | 32.7 | 1 |
| Google | 19 | 19.4 |  |
| Bing | 12 | 12.2 |  |
| Yahoo | 30 | 30.6 |  |
| Kapook | 98 | 5.1 |  |
| รวม |  | 100.0 |  |

จากตารางที่ 28 กลุ่มตัวอย่างส่วนใหญ่ จำนวน 32 คน คิดเป็นร้อยละ 32.7 เลือก Sanook เว็บไซต์ที่ใช้ในการค้นหาข้อมูลเกี่ยวกับการท่องเที่ยวที่เข้าใช้บ่อยเป็นอันดับ 2

ตารางที่ 29 จำนวนและร้อยละของกลุ่มตัวอย่างจำแนกตามความคิดเห็นต่อเว็บไซต์ที่ใช้ในการ
ค้นหาข้อมูลเกี่ยวกับการท่องเที่ยวที่เข้าใช้บ่อยเป็นอันดับ 3

| เว็บไซต์ที่ใช้ในการค้นหาข้อมูลเกี่ยวกับการท่องเที่ยวที่เข้า <br> ใช้บ่อยเป็นอันดับ 3 | จำนวน | ร้อยละ | อันดับ |
| :--- | :---: | :---: | :---: |
| Sanook | 25 | 25.5 |  |
| Google | 10 | 10.2 |  |
| Bing | 10 | 10.2 |  |
| Yahoo | 33 | 33.7 | 1 |
| Kapook | 90 | 20.4 |  |
| รวม | 100.0 |  |  |

จากตารางที่ 29 กลุ่มตัวอย่างส่วนใหญ่ จำนวน 33 คน คิดเป็นร้อยละ 33.7 เลือก Yahoo เว็บไซต์ที่ใช้ในการค้นหาข้อมูลเกี่ยวกับการท่องเที่ยวที่เข้าใช้บ่อยเป็นอันดับ 3

ตอนที่ 3 แบบประเมินความพึงพอใจต่อเครื่องมือค้นหาเว็บไซต์โดยใช้เว็บเชิงความหมาย กรณีศึกษาเว็บสารสนเทศการท่องเที่ยว ที่ให้บริการในการค้นหาข้อมูลเกี่ยวกับที่พักแรมและ สถานที่ท่องเที่ยวของอำเภอหัวหิน จังหวัดประจวบคีรีขันธ์

ตารางที่ 30 ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานของความพึงพอใจต่อเครื่องมือค้นหาเว็บไซต์โดย ใช้เว็บเชิงความหมายด้านเนี้อหา

| ความพึงพอใจ : ด้านเนื้อหา | ค่าเฉลี่ย | ส่วนเบี่ยงเบน <br> มาตรฐาน | ความหมาย |
| :--- | :---: | :---: | :---: |
| มีความชัดเจน ถูกต้อง และน่าเชื่อถือ | 4.39 | 0.636 | มากที่สุด |
| ปริมาณเนื้อหามีเพียงพอกับความต้องการ | 3.32 | 0.904 | ปานกลาง |

ตารางที่ 30 (ต่อ)

| ความพึงพอใจ : ด้านเนื้อหา | ค่าเฉลี่ย | ส่วนเบี่ยงเบน <br> มาตรฐาน | ความหมาย |
| :--- | :---: | :---: | :---: |
| ปริมาณเนื้อหามีความเหมาะสมกับหน้าเว็บเพจใน <br> แต่ละหน้า | 3.74 | 0.722 | มาก |
| การจัดลำดับเนื้อหาเป็นขั้นตอนและต่อเนื่อง อ่าน <br> แล้วเข้าใจง่าย | 3.37 | 0.935 | ปานกลาง |
| เนื้อหาสามารถนำไปใช้ประโยชน์ได้ | 4.15 | 0.751 | มาก |
| เนื้อหากับภาพมีความสอดคล้องกัน | 3.61 | 0.820 | มาก |
| สรุป | 3.76 | 0.889 | มาก |

จากตารางที่ 30 กลุ่มตัวอย่างมีความพึงพอใจในระดับมากต่อเครื่องมือค้นหาเว็บไซต์ โดยใช้เว็บเชิงความหมายด้านเนื้อหา (ค่าเฉลี่ย เท่ากับ 3.76 และส่วนเบี่ยงเบนมาตรฐาน เท่ากับ 0.889

ตารางที่ 31 ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานของความพึงพอใจต่อเครื่องมือค้นหาเว็บไซต์โดย ใช้เว็บเชิงความหมายด้านการออกแบบ

| ความพึงพอใจ : ด้านการออกแบบ | ค่าเฉลี่ย | ส่วนเบี่ยงเบน <br> มาตรฐาน | ความหมาย |
| :--- | :---: | :---: | :---: |
| หน้าโฮมเพจมีความสวยงาม เหมาะสมและ <br> น่าสนใจ | 4.15 | 0.842 | มาก |
| รูปแบบตัวอักษรอ่านได้ง่ายและสวยงาม | 3.76 | 0.909 | มาก |
| ขนาดของตัวอักษรอ่านได้ง่ายและเหมาะสม | 3.66 | 0.773 | มาก |
| สีของตัวอักษรชัดเจนและเหมาะสม | 3.49 | 0.777 | มาก |
| สีพื้นหลังกับสีตัวอักษรมีความเหมาะสม | 3.63 | 0.878 | มาก |
| ความเร็วในการโหลดภาพ | 3.40 | 0.846 | ปานกลาง |
| สรุป | 3.68 | 0.869 | มาก |

จากตารางที่ 31 กลุ่มตัวอย่างมีความพึงพอใจในระดับมากต่อเครื่องมือค้นหาเว็บไซต์ โดยใช้เว็บเชิงความหมายด้านการออกแบบ (ค่าเฉลี่ย เท่ากับ 3.68 และส่วนเบี่ยงเบนมาตรฐาน เท่ากับ 0.869 )

ตารางที่ 32 ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานของความพึงพอใจต่อเครื่องมือค้นหาเว็บไซต์โดย ใช้เว็บเชิงความหมายด้านการจัดรูปแบบของเว็บไซต์


จากตารางที่ 32 กลุ่มตัวอย่างมีความพึงพอใจในระดับมาก ต่อเครื่องมือค้นหาเว็บไซต์ โดยใช้เว็บเชิงความหมายด้านการจัดรูปแบบของเว็บไซต์ (ค่าเฉลี่ย เท่ากับ 3.70 และส่วนเบี่ยงเบน มาตรฐาน เท่ากับ 0.942 )

ตารางที่ 33 ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานของความพึงพอใจต่อเครื่องมือค้นหาเว็บไซต์โดย ใช้เว็บเชิงความหมายด้านประโยชน์และการนำไปใช้

| ความพึงพอใจ : ด้านประโยชน์และการนำไปใช้ | ค่าเฉลี่ย | ส่วนเบี่ยงเบน <br> มาตรฐาน | ความหมาย |
| :--- | :---: | :---: | :---: |
| สามารถเป็นแหล่งความรู้ได้ | 4.06 | 0.871 | มาก |
| เป็นสื่อเพื่อใช้เผยแพร่และประชาสัมพันธ์ <br> ผลงานวิจัยได้ | 3.77 | 0.939 | มาก |
| สามารถนำไปใช้เป็นแหล่งอ้างอิงให้กับงานวิจัย <br> ชิ้นอื่นได้ | 4.32 | 0.768 | มากที่สุด |
| มีประโยชน์ต่อครู นักเรียน นิสิต นักศึกษา นักวิจัย | 3.63 | 0.830 | มาก |
| มีประโยชน์ต่อการท่องเที่ยว | 4.26 | 0.663 | มากที่สุด |
| องค์ประกอบโดยรวม | 3.89 | 0.772 | มาก |
| สรุป | 3.99 | 0.846 | มาก |

จากตารางที่ 33 กลุ่มตัวอยางมีคความพึ่งพอใจในระดับมาก ต่อเครื่องมือค้นหาเว็บไซต์
โดยใช้เว็บเชิงความหมายด้านประโยชน์และการนำไปใช้ (ค่าเฉลี่ย เท่ากับ 3.99 และส่วนเบี่ยงเบน มาตรฐาน เท่ากับ 0.846 )

## บทที่ 5

อภิปรายผลของการวิจัย

## 1. อภิปรายการวัดค่าความซับซ้อนของคิวรี

จากผลการทดลองในตารางที่ 18 สามารถอภิปรายการวัดค่าแต่ละคิวรีได้ดังนี้
1.1 อภิปรายคิวรีที่ 1

แสดงคิวรีที่ 1 แบบคิวรีต่อเนื่องเปรียบเทียบระหว่าง RDB 1 และ OWL1

RDB1 คือคิวรีที่ 1 ของการวัดประสิทธิภาพของคิวรีจากฐานข้อมูลเชิงสัมพันธ์ $\mathrm{Q}(\mathrm{X})<-\operatorname{Accommodation}(\mathrm{X}) \wedge$ hasRate $(\mathrm{X}, \mathrm{A}) \wedge$ hasCategory $(\mathrm{X}, \mathrm{B})$
$\Lambda$ hasAccommodationFacility $(\mathrm{X}, \mathrm{C}) \wedge$ hasAccommodationFacility $(\mathrm{X}, \mathrm{D})$
$\wedge$ hasFacility $(\mathrm{X}, \mathrm{E}) \wedge \mathrm{A}=$ Room_Rate_2 $\wedge \mathrm{B}=$ Category_Bangalow $\wedge \mathrm{C}=$ Beach $\wedge \mathrm{D}=$ Refrigerator $\wedge \mathrm{E}=$ Air Conditioning.

OWL1คือคิวรีที่ 1 ของการวัดประสิทธิภาพของคิวรีจากออนโทโลยี $\mathrm{Q}(\mathrm{X})<-$ Category-Bangalow $(\mathrm{X}) \wedge_{\text {hasRate }}(\mathrm{X}, \mathrm{A}) \wedge$ hasFacility $(\mathrm{X}, \mathrm{B})$
$\wedge$ hasAccommodationFacility $(\mathrm{X}, \mathrm{C}) \wedge$ hasAccommodationFacility $(\mathrm{X}, \mathrm{D})$
$\wedge \mathrm{A}=$ Room_Rate_2 $\wedge \mathrm{B}=$ Beach $\wedge \mathrm{C}=$ Refrigerator $\wedge \mathrm{D}=$ Air Conditioning.

การกำหนดคิวรีนี้คือต้องการให้เป็นต้นแบบของคิวรีพื้นฐานคือการค้นหาที่พัก ปกติที่ต้องมีข้อมูลว่าเป็นที่พักแบบใด ระดับใด มีสิ่งอำนวยความสะดวกใด ซึ่งถือเป็นโหนดเริ่มต้น ของทุกคิวรีพบว่าสามารถตรวจสอบค่าได้ดังนี้
1.1.1 จำนวนเทอมของ $\mathrm{RDB}=7$ แต่ $\mathrm{OWL}=6$ เนื่องจากมีการตั้งค่าเงื่อนไขที่ คลาสประเภทที่พักแรมให้เท่ากับสับคลาสของที่พักแรม OWL จึงค้นหาสับคลาสเลย เทอมจึงลดลง 1.1.2 ค่าความซับซ้อนคิวรีมาจากตัวแปรเดียวคือที่พักแรม ดังนั้น $\mathrm{n}^{\mathrm{s}}=\mathrm{X}^{\mathrm{s}}=$ จำนวนตัวแปรของที่พักแรม เท่ากับ 2 ทั้งสองคิวรี
1.1.3 ค่าความลึกถือว่าไม่มี
1.1.4 ระดับความซับซ้อนคิวรี $=0.3$ จึงสรุปได้ว่า OWL ไม่ได้ช่วยลดความซับซ้อนแต่อย่างใดในกรณีที่ไม่มีความลึกดังนั้นค่าระดับความซับซ้อนขึ้นอยู่กับค่าความซับซ้อน

ส่วนค่าความซับซ้อนขึ้นอยู่กับจำนวนข้อมูล กรณีที่ไม่มีการจอยระหว่างคอนเซปต์
หลังจากทดสอบคิวรีที่ 1 แล้วจึงนำโดเมน Accommodation โดเมน Rate โดเมน Category และโดเมน Facility เป็นฐานในการค้นหาระดับต่อไปดังภาพที่ 44 แสดงภาพ โดเมนและ Rank ที่ใช้ในการทดสอบคิวรีของตารางที่ 14 การเลือกคิวรีมาทดสอบพิจารณาตามขนาดข้อมูล โดเมนและ ความลึก


ภาพที่ 44 แสดงภาพโดเมนและ Rank ที่ใช้ในการทดสอบคิวรี
1.2 อภิปรายคิวรีที่ 2

แสดงคิวรีที่ 2 แบบคิวรีต่อเนื่องเปรียบเที่ยบระหว่าง RDB 2 และ OWL2
RDB 2
$\mathrm{Q}(\mathrm{X})<-\operatorname{Accommodation}(\mathrm{X}) \wedge$ hasLocation $(\mathrm{X}, \mathrm{A}) \wedge$ hasRate $(\mathrm{X}, \mathrm{B})$
$\wedge$ hasCategory $(\mathrm{X}, \mathrm{C}) \wedge$ hasAccommodationFacility $(\mathrm{X}, \mathrm{D})$
$\Lambda$ hasAccommodationFacility $(\mathrm{X}, \mathrm{E}) \wedge$ hasFacility $(\mathrm{X}, \mathrm{F})$
$\wedge$ A=HuaHin-Takiab Road $\wedge \mathrm{B}=$ Room_Rate_2 $\wedge \mathrm{C}=$ Category_Bangalow
$\wedge \mathrm{D}=$ Beach $\wedge \mathrm{E}=$ Refrigerator $\wedge \mathrm{F}=$ Air Conditioning.
OWL2
$\mathrm{Q}(\mathrm{X})<-$ Category-Bangalow $(\mathrm{X}) \wedge$ hasLocation $(\mathrm{X}, \mathrm{A}) \wedge$ hasRate $(\mathrm{X}, \mathrm{B})$
$\Lambda$ hasFacility $(\mathrm{X}, \mathrm{C}) \wedge$ hasAccommodationFacility $(\mathrm{X}, \mathrm{D})$
$\Lambda$ hasAccommodationFAcility(X,E) $\wedge \mathrm{A}=$ HuaHin-Takiab Road
$\wedge \mathrm{B}=$ Room_Rate_2 $\wedge \mathrm{C}=$ Beach $\wedge \mathrm{D}=$ Refrigerator $\wedge \mathrm{E}=$ Air Conditioning.

การกำหนดคิวรีคือฐานข้อมูลเชิงสัมพันธ์เริ่มมีการจอยในขณะที่ความลึกทั้ง ฐานข้อมูลเชิงสัมพันธ์และฐานความรู้มีค่าเท่ากันคือมีค่า 1 พบว่าสามารถตรวจสอบค่าได้ดังนี้
1.2.1 จำนวนเทอมของ $\mathrm{RDB}=8$ แต่ $\mathrm{OWL}=7$ เนื่องจากการตั้งค่าในเงื่อนไขของ คลาสเวลาค้นหาจึงค้นหาที่สับคลาสได้เลยทำให้เทอมลดลง การคิดเทอมของ RDB-2 ในการค้นหา ที่ได้พักแรมแล้วจึงวนหาประเภทอีก แต่สำหรับ OWLสามารถค้นหาในระดับประเภทที่พักที่เป็น สับคลาสเลยเนื่องจากการใช้กฎของคลาส OWL ซึ่ง Reasoner สามารถจัดคลาสออนโทโลยีได้ใหม่ ดังส่วน Inferred Hierarchy ดังภาพที่ 45 ดังนั้นที่พักแรมแบบบังกะ โลสามารถปรับเป็นสมาชิกของ คลาสบังกะโลโดยอัตโนมัติ ทำให้คิวรีสามารถเริ่มจากคลาสบังกะโลเป็นคลาสรากได้เลย ซึ่งอยู่ใน ระดับสับคลาสของคลาสที่พักแรม นั่นคือได้ประโยชน์จากการลดเทอม

ค่าความซับซ้อนคิวรี RDB มาจากที่พักแรมและสถานที่ ดังนั้น $\mathrm{n}^{5}=\mathrm{X}^{5} \times \mathrm{V}^{\mathrm{s}}=$ จำนวนตัวแปรของที่พักแรม*จำนวนสถานที่ $=2 * 4=8$ ส่วน OWL 2 ไม่มีการจอยสามารถหา คำตอบโดยใช้ความสัมพันธ์ได้เลยจึงได้ค่าความซับซ้อนคิวรี $=2$
1.2.2 ดีกรีความซับซ้อนคิวรี $\mathrm{OWL}=0.3$ ส่วน $\mathrm{RDB}=0.9$ แสดงว่า OWL ช่วย ลดความซับซ้อน ดังนั้น OWL ช่วยลดดีกรีความซับซ้อนคิวรี กรณีที่มีการจอยด้วย
1.3 อภิปรายคิวรีที่ 3 แสดงคิวรีที่ 3 แบบคิวรีต่อเนื่องเปรียบเทียบระหว่าง $\operatorname{RDB} 3$ และ OWL3

RDB 3
$\mathrm{Q}(\mathrm{X})<-\operatorname{Accommodation}(\mathrm{X}) \wedge$ hasLocation $(\mathrm{X}, \mathrm{A}) \wedge$ hasLocation $(\mathrm{X}, \mathrm{V})$
$\Lambda$ hasLocationAttraction (V,B) $\wedge$ hasLocationAttraction (V,C) $\wedge$ hasRate(X,D)
\hasCategory(X,E) $\wedge$ hasAccommodationFacility (X,F)
^A= Naebkehad $\Lambda \mathrm{B}=$ Num_chai_Kaew_Pla $\wedge \mathrm{C}=$ Yoo_Yen_Restuarant
$\Lambda \mathrm{D}=$ Room_rate_1 $\Lambda \mathrm{E}=$ Category_Hotel $\Lambda \mathrm{F}=$ Beach

OWL3
$\mathrm{Q}(\mathrm{X})<-$ Category-Hotel $(\mathrm{X}) \wedge$ hasLocation $(\mathrm{X}, \mathrm{A}) \wedge$ hasLocationAttraction $(\mathrm{X}, \mathrm{B})$
$\Lambda$ hasLocationAttraction (X,C) $\wedge$ hasRate(X,D)
$\Lambda$ hasAccommodationFacility(X,F) $\wedge$ A= Naebkehad
$\Lambda \mathrm{B} \equiv$ Num_chai_Kaew_Pla $\wedge \mathrm{C}=$ Yoo_Yen_Restuarant
$\Lambda \mathrm{D}=$ Room_Rate $1 \Lambda \mathrm{~F}=$ Beach.
การกำหนดคิวรีคือฐานข้อมูลเชิงสัมพันธ์เริ่มมีการจอยเท่ากับ 2 มีความลึก $=1$ ส่วนฐานความรู้ความลึก $=2$ พบว่าสามารถตรวจสอบค่าได้ดังนี้

จำนวนเทอมของ $\mathrm{RDB}=9$ แต่ $\mathrm{OWL}=7$ ค่าความซับซ้อนคิวรี $\mathrm{n}^{\mathrm{s}}=\mathrm{X}^{\mathrm{s}} * \mathrm{~V}^{\mathrm{s}}=$ จำนวนตัวแปรของที่พักแรม * จำนวนสถานที่ที่ต้องใช้ค้น Attraction ของ RDB-3: OWL-3 $=20$ : 2
1.3.2 ระดับความซับซ้อนคิวรี $\mathrm{RDB}-3: \mathrm{OWL}-3=1.3: 0.3$ ดังนั้น OWL ช่วยลด ความซับซ้อน $77 \%$

สรุปคิวรีที่ 3 นี้แสดงให้เห็นว่าเมื่อมีการจอยของฐานข้อมูลเชิงสัมพันธ์มากขึ้นทำ ให้ความซับซ้อนของข้อมูลมากขึ้น ส่งผลให้ดีกรีความซับซ้อนของคิวรีมากขึ้น ในขณะที่ ฐานความรู้ของ OWL มีค่าความลึกเพิ่มขึ้นเช่นกันแต่ความสัมพันธ์ในฐานความรู้ของ OWL ช่วยให้ ระดับความซับซ้อนไม่เพิ่มขึ้นมากนัก

## 1.4 อภิปรายคิวรีที่ 4

แสดงคิวรีที่ 4 แบบคิวรีต่อเนื่องเปรียบเที่ยบระหว่าง RDB 4 และ OWL4

RDB 4
$\mathrm{Q}(\mathrm{X})<-\operatorname{Accommodation}(\mathrm{X}) \wedge$ hasLocation $(\mathrm{X}, \mathrm{A}) \wedge$ hasLocation $(\mathrm{X}, \mathrm{V})$
$\Lambda$ hasLocationClassification $(\mathrm{V}, \mathrm{B}) \wedge$ hasRate $(\mathrm{X}, \mathrm{C}) \wedge_{\text {hasCategory }}(\mathrm{X}, \mathrm{D})$
$\Lambda$ hasAccommodationFacility(X,E) $\wedge$ hasAccommodationFacility (X,F)
$\wedge \mathrm{A}=$ Takiab $\wedge \mathrm{B}=$ Classification_FoodCourse $\wedge \mathrm{C}=$ Room rate_4
$\Lambda \mathrm{D}=$ Category_Bangalow $\Lambda \mathrm{E}=$ Garden $\Lambda \mathrm{F}=$ Beach.

OWL 4
$\mathrm{Q}(\mathrm{X})<-$ Category-Bangalow $(\mathrm{X}) \wedge$ hasLocation $(\mathrm{X}, \mathrm{A})$
^hasLocationClassification(X,B) hasRate ( $\mathrm{X}, \mathrm{C}$ )
$\Lambda$ hasAccommodationFacility (X,E) $\Lambda_{\text {hasAccommodationFacility }}(\mathrm{X}, \mathrm{F})$
$\Lambda A \neq$ Takiab $\wedge B=$ Classification_FoodCourse
$\Lambda C=$ Room_rate $4 \Lambda E=$ Garden $\Lambda F=$ Beach.

คิวรีชุดที่ 4 นั้นมีจำนวนข้อมูลมากกว่าชุดที่ 3 ขณะที่การจอยของฐานข้อมูลเชิง สัมพันธ์และความลึกของฐานความรู้เท่ากัน สร้างขึ้นเพื่อทดสอบว่าในกรณีที่การจอยและความลึก เท่ากันแต่ต่างกันที่จำนวนข้อมูลมีผลต่อค่าความซับซ้อนคิวรีหรือไม่ ได้ผลลัพธ์ว่าระดับความ ซับซ้อนคิวรี RDB-4 : OWL-4 = $3.0: 0.30$ ดังนั้น OWL ช่วยลดความซับซ้อนถึง $90 \%$

เนื่องจากการจอยนั้นต้องจอยที่พักแรมกับสถานที่และสถานที่ท่องเที่ยวกับ ประเภทของสถานที่ท่องเที่ยวจึงทำให้มีความซับซ้อนของข้อมูลมาก ส่งผลให้ความซับซ้อนของคิว รีมาก และดีกรีความซับซ้อนของคิวรีมากตามไปด้วย ในขณะที่การใช้ความสัมพันธ์ของ OWL มี ความสัมพันธ์ที่มีคุณสมบัติการถ่ายทอดที่สามารถถ่ายทอดความสัมพันธ์จากที่พักแรมไปถึง ประเภทของสถานที่ท่องเที่ยวได้เลย จึงสรุปรวมได้ว่าการตั้งเงื่อนไขในคอนเซปต์ อย่างละเอียด (Asserted condition) และใช้คุณสมบัติถ่ายทอดทำให้สามารถลดดีกรีความซับซ้อนของคิวรีแม้ว่า ข้อมูลจะซับซ้อนมากขึ้น แต่มีการจอยเท่าเดิม
1.5 อภิปรายคิวรีที่ 5

แสดงคิวรีที่ 5 แบบคิวรีต่อเนื่องเปรียบเทียบระหว่าง RDB 5 และ OWL5
RDB 5
$\mathrm{Q}(\mathrm{X})<-$ Accommodation $(\mathrm{X}) \wedge$ hasLocation $(\mathrm{X}, \mathrm{A}) \wedge$ hasLocation $(\mathrm{X}, \mathrm{V})$
$\Lambda$ hasLocationClassification(V,B) $\wedge$ hasLocationClassification(V,C)
^hasRate(X,D) $\wedge$ hasCategory (X,E) $\wedge$ hasAccommodationFacility (X,F)
\hasAccommodationFacility (X,G) $\wedge$ hasLocationAttraction(V,H)
$\wedge \mathrm{A}=$ Petkasem_Road $\Lambda \mathrm{B}=$ Classification_FoodCourse
$\Lambda \mathrm{C}=$ Classification_Shopping $\Lambda \mathrm{D}=$ Room_rate_1
$\Lambda \mathrm{E}=$ Category_Hotel $\wedge \mathrm{F}=$ Garden $\Lambda \mathrm{G}=$ Beach
$\Lambda \mathrm{H}=$ Klai_Kangwon_Huahin_Palace.
OWL5
$\mathrm{Q}(\mathrm{X})<-$ Category-Hotel $(\mathrm{X}) \wedge$ hasLocation $(\mathrm{X}, \mathrm{A})$
\hasLocationClassification(X,B)

^hasAccommodationFacility (X,G)
^hasLocationAttraction(X,H) $\wedge$ A=Petkasem_Road
$\wedge_{\mathrm{B}}=$ Classification_FoodCourse $\Lambda \mathrm{C}=$ Classification_Shopping
$\Lambda \mathrm{D}=$ Room_rate_1 $\wedge \mathrm{F}=$ Garden $\Lambda \mathrm{G}=$ Beach
^ H=Klai_Kangwon_Huahin_Palace.
อธิบายผลการทดสอบของคิวรีชุดที่ 5 ต่างจากคิวรีชุดที่ 4 คือมีจำนวนข้อมูล มากกว่าคิวรีชุดที่ 4 ขณะที่การจอยของฐานข้อมูลเชิงสัมพันธ์และความลึกของฐานความรู้เท่ากัน คือ 3

สร้างคิวรีชุดที่ 5 ขึ้นเพื่อทดสอบว่าในกรณีที่การจอยและความลึกเท่ากันมีผลต่อ ค่าความซับซ้อนคิวรีหรือไม่นำ โดยประยุกต์คุณสมบัติ OWL คิวรีที่ 3 และ 4 มารวมกันแม้ว่าข้อมูล และความลึกมากขึ้น สำหรับ OWL ก็ยังมีดีกรีความซับซ้อนของคิวรีน้อยกว่า RDB อยู่ดี โดยข้อมูล ตัวแปรที่เชื่อม และดีกรีความซับซ้อนของ RDB มากที่สุด คือ $\mathrm{RDB}-5$ : OWL-5 $=3.8$ : 0.7 OWL ช่วยลดความซับซ้อน $82 \%$
2. อภิปรายผลการทดสอบคิวรีทั้งสองเครื่อง


ภาพที่ 45 กราฟแท่งเปรียบเทียบเวลาที่ใช้รัน RDB และ OWL ของเครื่องทดสอบที่ 1 และ 2

จากภาพที่ 45 ผลโดยรวมเครื่องที่ 2 ซึ่งมีความเร็วมากกว่ารันทั้ง RDB และ OWL โดย ใช้เวลาน้อยกว่า แต่สังเกตว่าทั้งสองเครื่องที่มีความเร็วต่างกันต่างก็รัน RDB โดยใช้เวลามากกว่า OWL

จากภาพที่ 46 กราฟแท่งเปรียบเทียบค่าความซับซ้อนคิวรีตั้งแต่คิวรีที่ 1 ถึงคิวรีที่ 5 ระหว่างฐานข้อมูลเชิงสัมพันธ์และฐานความรู้ พบว่าค่าความซับซ้อนคิวรีของฐานข้อมูลเชิง สัมพันธ์เพิ่มขึ้นตามขนาดข้อมูล ส่วนค่าความซับซ้อนคิวรีของฐานความรู้เพิ่มขึ้นตามขนาดของ คำตอบที่ได้

จากภาพที่ 47 เมื่อนำความซับซ้อนคิวรีจากฐานข้อมูลเชิงสัมพันธ์มาเปรียบเทียบกับ เปอร์เซ็นต์การลดลงของดีกรีความซับซ้อนที่ OWL มีต่อ RDB เมื่อใช้ฐานความรู้แล้วพบว่ายิ่ง ฐานข้อมูลเชิงสัมพันธ์มีค่าความซับซ้อนของข้อมูลมาก ส่งผลให้ค่าความซับซ้อนของคิวรีมาก เท่าไร ฐานความรู้ OWL ที่ใช้คิวรีเปรียบเทียบจะช่วยลดดีกรีความซับซ้อนได้


ภาพที่ 46 กราฟแท่งเปรียบเทียบค่าความซับซ้อนคิวรีตั้งแต่คิวรีที่ 1 ถึงคิวรีที่ 5 ระหว่างฐานข้อมูล เชิงสัมพันธ์และฐานความรู้


ภาพที่ 47 กราฟแท่งเปรียบเทียบระหว่างค่าความซับซ้อนคิวรีจากฐานข้อมูลเชิงสัมพันธ์และ เปอร์เซ็นต์การลดลงของดีกรีความซับซ้อนที่ OWL มีต่อ RDB

## 3. อภิปรายผลการวิเคราะห์ข้อมูลจากการตรวจสอบการค้นหาตาม OWL DL

การทดสอบหาค่าอินสแตนซ์จากเงื่อนไขใน OWL DL โดยค้นหาจากการใช้เงื่อนไขที่มี ตัวบ่งปริมาณ การใช้เงื่อนไขตามระดับชั้นความสัมพันธ์ การใช้เงื่อนไข (In)Equality ซึ่งในที่นี้คือ equivalentClass การใช้เงื่อนไขคลาสที่ดิสจอยน์กัน การใช้เงื่อนไขตามคุณสมบัติทรานซิทีฟ สมมาตร ฟังก์ชันนัล และอินเวอร์สฟังก์ชันนัล และการค้นหาอินสแตนซ์จากประโยค $\forall$ และ $\exists$ นั้นใช้การวัดผลจาก โปรแกรม Protégé โดยเงื่อนไขที่ทดสอบเป็นไปตามตารางที่ 16 รีสตริกชันที่ ใช้ในออนโทโลยีการท่องเที่ยว

รวมทั้งจับเวลาค้นหาจากโปรแกรมที่สร้างขึ้นทั้งแบบ Top-Down และ Bottom-Up ใน หน่วยมิลลิวินาที โดยในโปรแกรม Top-Down ใช้ความสัมพันธ์แบบ Active เพื่อหาอินสแตนซ์ ส่วน Bottom-Up ใช้ความสัมพันธ์แบบ Passive เพื่อค้นหา Class ซึ่งทั้งสองส่วนมีการค้นหาบน ออนโทโลยีเดียวกัน ต่างกันที่ประมวลผลจากโปรแกรม Protégé ในมุมมองของผู้พัฒนาออนโทโลยี ในส่วนของโปรแกรมที่สร้างเป็นมุมมองของผู้ใช้งาน


ภาพที่ 48 การเปรียบเทียบเวลาที่ได้จากการทดสอบหาค่าอินสแตนซ์จากเงื่อนไขใน OWL DL

จากผลการทดสอบที่ได้พบว่าการค้นหาอินสแตนซ์ทั้งหมดจากออนโทโลยี โดยการ ใช้เงื่อนไขที่มีตัวบ่งปริมาณ การค้นหาอินสแตนซ์จากประโยค $\forall$ และ $\exists$ และการใช้เงื่อนไข (In)Equality ซึ่งในที่นี้คือ equivalentClass นั้น พบว่าไม่ว่าจำนวนอินสแตนซ์ที่หาพบจากประโยค เหล่านี้ทาง Top-Down (ประโยค Active) จะมีจำนวนเท่าไรก็ตาม จะใช้เวลาน้อยกว่าการค้นหา ประโยคเหล่านี้จากการค้นหาแบบ Bottom-Up (ประโยค Passive)ที่เป็นการหา Category Type ของ อินสแตนซ์นั้นอย่างชัดเจน

ในส่วนของการใช้เงื่อนไขตามระดับชั้นความสัมพันธ์ การใช้เงื่อนไขคลาสที่ดิสจอยน์ กัน และการใช้เงื่อนไขตามคุณสมบัติทรานซิทีฟ สมมาตร ฟังก์ชันนัล และอินเวอร์สฟังก์ชันนัล เพื่อหาคำตอบพบว่าใช้เวลาในการค้นหาความสัมพันธ์แบบ Passive ของ Bottom-Up น้อยกว่าการ ค้นหาแบบ Top-Down ความสัมพันธ์แบบ Active เพื่อค้นหาอินสแตนซ์

สุดท้ายในส่วนของโปรแกรมที่พัฒนาขึ้นผ่านมุมมองจากผู้ใช้งานพบว่าระหว่างการ ค้นหาว่าอินสแตนซ์ที่พักแรมที่ต้องการเป็นการค้นหาแบบ Top-Down และการค้นหาว่าชื่อที่ ต้องการอยู่ในโดเมนใด เป็นการค้นหาแบบ Bottom $-U p$ นั้นใช้เวลาเฉลี่ยไม่ต่างกันมากนัก โดยการ ค้นหาแบบ Bottom-Up ใช้เวลาในการค้นหาน้อยกว่าเล็กน้อยคือ 583 มิลลิวินาที ในขณะที่การ ค้นหาแบบ Top-Down ใช้เวลา 591 มิลลิวินาที

## 4. อภิปรายผลการทดสอบการใช้งานโปรแกรมโดยกลุ่มตัวอย่าง

กลุ่มตัวอย่างที่ใช้ในการวิจัยครั้งนี้คือบุคคลที่เคยใช้บริการค้นหาที่พักแรม แหล่ง ท่องเที่ยว ในอำเภอหัวหิน โดยกลุ่มตัวอย่างที่ตอบแบบสอบถามส่วนใหญ่เป็นเพศหญิงร้อยละ 57.1 โดยกลุ่มตัวอย่างส่วนใหญ่มีอายุอยู่ในช่วง $31-40$ ปี คิดเป็นร้อยละ 39.8 มีระดับการศึกษาปริญญา ตรีมากที่สุดคิดเป็นร้อยละ 46.9 มีอาชีพเป็นพนักงานบริษัทและรับจ้างทั่วไป คิดเป็นร้อยละ 26.5 และ 25.5 ตามลำดับ

ส่วนข้อมูลด้านการใช้อินเตอร์เน็ตของกลุ่มตัวอย่าง พบว่าการใช้งานที่มากที่สุดเมื่อเข้า งานอินเตอร์เน็ตคือการสืบค้นข้อมูล คิดเป็นร้อยละ 26.5 ความคิดเห็นต่อความจำเป็นในการใช้ เครื่องมือค้นหาเว็บไซต์ (Search Engine) ในการค้นหาข้อมูลเพื่อวางแผนก่อนการท่องเที่ยวอำเภอ หัวหิน กลุ่มตัวอย่างคิดว่าจำเป็น ร้อยละ 98.0 ความพึงพอใจในระดับมากที่สุดต่อการเข้าใช้ อินเตอร์เน็ตเพื่อสืบค้นข้อมูล ข่าวสารทั่วไป (ค่าเฉลี่ย เท่ากับ 4.52 และส่วนเบี่ยงเบนมาตรฐาน เท่ากับ 0.735 ) มีความพึงพอใจในระดับมากต่อการเข้าใช้อินเตอร์เน็ตเพื่อรับ-ส่งจดหมายหรือข้อมูล อิเล็กทรอนิกส์ (ค่าเฉลี่ย เท่ากับ 3.93 และส่วนเบี่ยงเบนมาตรฐาน เท่ากับ 0.865 ) มีความพึงพอใจใน

ระดับมากต่อการเข้าใช้อินเตอร์เน็ตเพื่อติดต่อสังคมออนไลน์ (ค่าเฉลี่ย เท่ากับ 3.71 และส่วน เบี่ยงเบนมาตรฐาน เท่ากับ 0.760 ) มีความพึงพอใจในระดับมากต่อการเข้าใช้อินเตอร์เน็ตเพื่อสืบค้น ข้อมูล เพื่อวางแผนการท่องเที่ยว (ค่าเฉลี่ย เท่ากับ 3.91 และส่วนเบี่ยงเบนมาตรฐาน เท่ากับ 0.788 )

ส่วนเว็บไซต์ที่ใช้ในการค้นหาข้อมูลเกี่ยวกับการท่องเที่ยวที่เข้าใช้บ่อยที่สุด เป็นอันดับ $1-3$ มีลำดับดังนี้ 1.Google 2.Sanook 3.Yahoo

ด้านความพึงพอใจต่อเครื่องมือค้นหาเว็บไซต์โดยใช้เว็บเชิงความหมาย กรณีศึกษาเว็บ สารสนเทศการท่องเที่ยว ที่ให้บริการในการค้นหาข้อมูลเกี่ยวกับที่พักแรมและสถานที่ท่องเที่ยว ของอำเภอหัวหิน จังหวัดประจวบคีรีขันธ์ กลุ่มตัวอย่างมีความพึงพอใจในระดับมากต่อเครื่องมือ ค้นหาเว็บไซต์โดยใช้เว็บเชิงความหมายด้านเนื้อหา (ค่าเฉลี่ย เท่ากับ 3.76 และส่วนเบี่ยงเบน มาตรฐาน เท่ากับ 0.889 ) ด้านการออกแบบมีความพึงพอใจในระดับมาก (ค่าเฉลี่ย เท่ากับ 3.68 และ ส่วนเบี่ยงเบนมาตรฐาน เท่ากับ 0.869 ) ด้านการจัดรูปแบบของเว็บไซต์มีความพึงพอใจในระดับ มาก (ค่าเฉลี่ย เท่ากับ 3.70 และส่วนเบี่ยงเบนมาตรฐาน เท่ากับ 0.942 ) ด้านประโยชน์และการ นำไปใช้มีความพึงพอใจในระดับมาก (ค่าเฉลี่ย เท่ากับ 3.99 และส่วนเบี่ยงเบนมาตรฐาน เท่ากับ


## บทที่ 6

## สรุปผลการศึกษาและข้อเสนอแนะ

## 1. สรุปผลการศึกษาเรื่องการลดความซับซ้อนของข้อมูล

ประโยชน์ที่ได้รับจากการเก็บข้อมูลในออนโทโลยี คือสามารถลดความซับซ้อนในการ ค้นหาข้อมูลได้ เช่น คิวรีที่ 1 และ 2 ได้รับประโยชน์จากการลดเทอม เนื่องจากการใช้กฎของคลาส ใน OWL ซึ่ง Reasoner สามารถจัดคลาสออนโทโลยีได้ใหม่ ดังนั้นคิวรีสามารถค้นหาสับคลาสได้ เลย ส่วนคิวรีที่ 3 และ 4 ใช้คุณสมบัติทรานซิทีฟเข้ามาทำให้ OWL มีระดับความซับซ้อนน้อยกว่า ในกรณีที่มีเทอมและการจอยมากกว่า และยิ่งเห็นได้ชัดเจนในกรณีที่มีจำนวนข้อมูลมากขึ้น ส่งผล ให้จำนวนเปอร์เซ็นต์ของการลดดีกรีความซับซ้อนที่ OWL กระทำต่อ RDB มากขึ้นในที่สุด จากทฤษฎีบทของวาร์ดีและคาลวาเนสนั้นการวัดความซับซ้อนของคิวรีสรุปได้ว่า สำหรับรูปแบบฐานข้อมูลเชิงสัมพันธ์ในขอบเขตที่ศึกษา มีค่าความซับซ้อนคิวรีขึ้นอยู่กับความ ซับซ้อนของข้อมูลและตัวแปรที่เชื่อมต่อหากมีจำนวนมากแล้วค่าความซับซ้อนคิวรีจะมีมากขึ้น ดังนั้นระดับความซับซ้อนคิวรีจึงสูง สำหรับออนโทโลยีนั้นแม้ว่าข้อมูลมีสับคลาสที่ซับซ้อนแต่ไม่ มีตัวแปรเชื่อมต่อกันระหว่โงคอนเซปต์ ออนโทโลยีสามารถสดระดับการเข้าถึงคลาสให้น้อยลงได้ เนื่องจากสามารถอ่านสับคลาสได้เลย และแม้ว่าออนโทโลยีจะมีความลึกแต่ก็มีความสัมพันธ์แบบ ทรานซิทีฟช่วยส่งค่าผ่านไปได้ ส่งผลให้ดีกรีความซับซ้อนคิวรีลดลงด้วยเมื่อเปรียบเทียบกับ รูปแบบฐานข้อมูลเชิงสัมพันธ์ เมื่อคิดเป็นเปอร์เซ็นต์การลดดีกรีความซับซ้อนคิวรีในกรณีที่มีการ จอยของฐานข้อมูลเชิงสัมพันธ์และความลึกของฐานความรู้ที่มากที่สุดในการทดลองนี้ ลดลงได้ถึง 82\%

## 2. สรุปผลการศึกษาเรื่องการใช้ OWL DL

การนำกฎของ OWL DL ที่มีคุณสมบัติตาม $S \mathcal{H I O N}{ }^{(1)}$ (ข้ามาใช้งานช่วยให้การค้นหา ข้อมูลเชิงความหมายมีประสิทธิภาพยิ่งขึ้นในการลดเวลาที่ใช้ในการรวบรวมข้อมูลจากหลาย ขั้นตอน เมื่อใช้ความสัมพันธ์ สามารถช่วยให้การค้นหาคำตอบตรงตามความต้องการของผู้ใช้มาก ขึ้น แต่จำนวนครั้งที่ผู้ใช้ค้นหาลดลง ตัวอย่างเช่น ความสัมพันธ์แบบฟังก์ชันนัลที่ช่วยให้ผู้ใช้ สามารถค้นหาข้อมูลที่ต่างกันอย่างเลขที่บ้าน และพิกัดทางภูมิศาสตร์ว่าเป็นสถานที่เดียวกันได้ การ ที่คนหรือสถานที่หนึ่งมีสองชื่อทำให้ผู้ใช้และเครื่องเข้าใจ ได้ว่าสิ่งนั้นเป็นสิ่งเดียวกัน การตั้ง ระดับชั้นความสัมพันธ์หรือระดับชั้นของคลาสที่มีการถ่ายทอดคุณสมบัติทำให้ตั้งเงื่อนไขที่จำเป็น

ในคลาสแม่แล้วคลาสลูกจะได้รับการสืบทอดคุณสมบัตินั้น การใช้คุณสมบัติ เพื่อสร้างกลุ่มคำที่ เป็นสับเซตของคลาสสามารถช่วยให้ค้นหาข้อมูลที่เห็นได้ชัดเจนคือ เมื่อแต่ละเว็บไซต์ใช้คำต่างกัน แต่คำเหล่านี้ได้รับการเชื่อมด้วยคุณสมบัติเดียวกันส่งผลให้เมื่อมีการค้นหาวัตถุหรือคำนั้นเครื่องจะ สามารถเข้าใจ ได้ว่าเป็นสิ่งเดียวกันดังตัวอย่างการค้นหาต่อไปนี้


ภาพที่ 49 หน้าจอที่ผู้ใช้เลือกเงื่อนไขในการค้นหาห้องประชุม


ภาพที่ 50 ผลลัพธ์ของการค้นหาห้องประชุมตามที่ระบุสิ่งอำนวยความสะดวก

จากภาพที่ 49 ผู้ใช้เลือกเงื่อนไขในการค้นหาห้องประชุมโดยเลือกสิ่งอำนวยความ สะดวกประกอบด้วย Lit By Natural Day Light, Stage, Slide Projector, Video Conference System, videoProjector, Screen และ Audio Equipment และเลือกแสดงข้อมูลทั้งชื่อ ราคา เว็บไซต์ ภาพ สถานที่ตั้งและคำบรรยายจะได้ผลลัพธ์ดังภาพที่ 50

เมื่อคลิกเข้าไปยังแต่ละเว็บไซต์ที่ใหข้อมูลเกี่ยวกับห้องประชุมจะพบว่าเว็บไซต์แต่ละ แห่งใช้คำต่างกัน เช่น Conference package equipment หรือ Full range of meeting facilities แต่ทั้ง สองคำนี้จะถูกสร้างเป็นอินสแตนซ์ไว้ในคลาส RoomFacility>Confernece Room เช่นเดียวกันเมื่อมี การค้นหา Conference Room Facility จึงได้ผลลัพธ์ออกมาด้วย

การลดขั้นตอนการค้นหานับว่าเป็นการปรับปรุงการค้นหาเว็บไซต์ ในการสร้าง $O W L$ DL ผู้สร้างสามารถตั้งเงื่อนไขสำหรับนักท่องเที่ยวแต่ละประเภทเพื่อให้การค้นหาเป็นไปใน ขั้นตอนเดียว เช่นการตั้งกลุ่มนักท่องเที่ยวแบบสะพายเป้ การตั้งกลุ่มนักท่องเที่ยวเพื่อการแสวง ธรรม การตั้งกลุ่มผู้้ข้าร่วมสัมมนาหรือสถานที่ท่องเที่ยวของครอบครัว เป็นต้น เมื่อยู้ใช้เหล่านี้เข้า มาทำการค้นหาจะช่วยลดขั้นตอนย่อยในการค้นหาภาพรวมได้

## 3. สรุปผลการทดสอบการใช้งานโปรแกรมโดยกลุ่มตัวอย่าง

กลุ่มตัวอย่างที่เคยใช้บริการค้นหาเว็บไซต์ที่พักแรม แหล่งท่องเที่ยว ในอำเภอหัวหิน ให้ความคิดเห็นต่อโปรแกรม โดยมีระดับความพึงพอใจต่อเครื่องมือค้นหาเว็บไซต์โดยใช้เว็บเชิง ความหมาย ในระดับมากทุกด้านของการสำรวจ คือ ด้านเนื้อหา ด้านการออกแบบ ด้านการ จัครูปแบบของเว็บไซต์ ด้านประโอชน์และการนำไปใช้

## 4. ข้อเสนอแนะ

จากบัญหาที่พบในการวิจัย ผู้วัอัยได้รวบรวมขึ้นเพื่อพัฒนาการวิจัยในครั้งต่อไปและเพื่อ เป็นแนวทางศึกษาให้แก่ผู้สนใจด้านเว็บเชิงความหมาย
4.1 การค้นหาคำที่มีความหมายคล้ายคลึงกัน ในกรมีที่สร้างออนโทโลยีขึ้นมาเองจะ พบว่ามีปัญหาความคล้ายคลึงของคำศัพท์ ซึ่งเราต้องออกแบบออนโทโลยีให้ครอบคลุมและ ปรับปรุงอยู่เสมอหรืออาจใช้ฐานความรู้ของเวิร์ดเน็ต และการให้น้ำหนักคำเข้ามาช่วยเพื่อให้ โปรแกรมสามารถตรวจความถูกต้องของการค้นหาความคล้ายคลึงได้แม่นยำยิ่งขึ้น
4.2 โปรแกรมเว็บเชิงความหมายมีการคิวรีได้อย่างอิสระ ึึงทำให้ผู้ใช้สามารถนำไป รวมกับข้อมูลได้หลากหลายรูปแบบ แต่กรณีที่เป็นดาต้าซอร์สที่ใหม่มากๆ เช่น ด้านการแพทย์ที่ ทันสมัย ผู้พัผนาโปรแกรมต้องหาทางคิวรรีข้ามดาต้าซอร์สให้ได้ ซึ่งการที่จะหาว่าโครงสร้างใดดี ที่สุด เหมาะสมที่สุดแล้วทำได้ยาก เพราะต้องแมพคำศัพท์ระหว่างกันแต่ปัญหานี้สามารณแก้ได้โดย การหาคำตอบที่ "คิอว่าใกล้เคียง" หรือ "ใกล้พอ" โดยใช้การประมาณค่ามาช่วยได้
4.3 การสะกดคำผิด มีบางเว็บไซต์ที่เป็นแหล่งข้อมูลมีการสะกดคำผิด แม้ว่าจะเขียน โปรแกรมสร้างแท็กอัตโนมัติมาช่วยบรรเทาการพิมพ์ผิดแล้ว แต่ถ้าต้นทางคำศัพท์ที่ดึงมาผิด ศัพท์ที่ ได้ก็ไม่มีประโยชน์ ผิดโครงสร้างที่ทำไว้ จึงต้องใช้วิธีหาศัพท์ที่คล้ายคลึงกันมาช่วยต่อไป
4.4 กรณีที่โดเมนที่เราสนใจเกิดเว็บใหม่ ๆ ขึ้นมาหรือมีการอัพเดตเว็บซึ่งมีข้อความหรือ ความหมายที่เปลี่ยนไป หากใช้วิธีเก็บข้อมูลแบบการวิจัยนี้จะช้ามากและอาจเกิดความล้าสมัยได้ ซึ่ง ต้องใช้เทคโนโลยีเว็บเซอร์วิสเชิงความหมาย หรืออาจเป็นเว็บครอวเลอร์บนออนโทโลยีมาช่วยใน การเก็บข้อมูล
4.5 ข้อมูลส่วนใหญ่ที่ใช้เว็บเชิงความหมาย ส่วนมากไม่ได้สร้างจากเทคโนโลยีเว็บเชิง ความหมายตั้งแต่ต้นแต่นำมาจากฐานข้อมูลเชิงสัมพันธ์ หรือที่พบบ่อยคือแปลงมา ดึงมาจากเว็บ เซอร์วิส หรือจากหน้าเอชทีเอ็มแอลดังการวิจัยนี้ ดังนั้นข้อมูลจึงไม่เป็นทิศทางเดียวกันตั้งแต่ต้นจึง ต้องหาเทคโนโลยีใหม่ๆ ที่มีประสิทธิภาพมาจัดการกับปัญหานี้ต่อไป

## บรรณานุกรม

## ภาษาไทย

เทศบาลเมืองหัวหิน. "บรรยายสรุป." ธันวาคม 2550 .
ทีมงาน GLOBLET.COM. Search Engine Marketing 2.0. พิมพ์ครั้งที่ 2. กรุงเทพมหานคร: โรง พิมพ์บริษัท มิตรภาพการพิมพ์และสติวดิโอ จำกัด, 2549.
ธนกฤต สังข์เฉย. อุตสาหกรรมการท่องเที่ยวและการบริการ. นครปฐม : โรงพิมพ์มหาวิทยาลัย ศิลปากร วิทยาเขตพระราชวังสนามจันทร์, 2550 .
มหาวิทยาลัยสุ โขทัยธรรมาธิราช. สาขาวิทยาการจัดการ.ระบบสารสนเทศเพื่อการจัดการการ ท่องเที่ยว. กรุงเทพมหานคร:สำนักพิมพ์มหาวิทยาลัยสุ โขทัยธรรมาธิราช, 2545 .
ศรัญยา วรากุลวิทย์. ปฐมนิเทศอุตสาหกรรมการท่องเที่ยว (ORIENTATION TO TOURISM INDUSTRY). กรุงเทพมหานคร : เฟื่องฟ้า พริ้นติ้ง, 2546.
อัศนีย์ ก่อตระกูล. การพัฒนาระบบสกัดข้อสนเทศและความรู้จากเอกสารไร้โครงสร้างภาษาไทย. ม.ป.ท., 2550 .


Abrahams, Brooke, and Wei Dai. "Architecture for automated annotation and ontology based querying of Semantic Web resources." The 2005 IEEE/WIC/ACM International Conference on Web Intelligence. Los Alamitos: IEEE Computer Society, 2005.

Alesso, H. P., and C. F. Smith. Developing Semantic Web Services. Wellesey: A K Peters Ltd., 2004.

Antoniou, Grigoris, and Frank Van Harmelen. A Semantic Web Primer. 2nd ed. Cambridge: The MIT Press, 2008.

Berners-Lee, Tim, James Hendler, and Ora Lassila. The Semantic Web [Online]. Accessed 1 May 2008. Available from http://www-sop.inria.fr/acacia/cours/essi2006/Scientific \%20American_\%20Feature\%20Article_\%20The\%20Semantic\%20Web_\%20May\%2 02001.pdf.

Berners-Lee, Tim, and others. "Tabulator:Exploring and Analyzing linked data on the Semantic Web." Proceedings of the 3rd International Semantic Web User Interaction Workshop. n.p., 2006.

Bizer, Christian, and Andreas Schultz. "The Berlin SPARQL Benchmark." International Journal On Semantic Web and Information Systems 5, 2(2009): 1-24.

Brin, Sergey, and Lawrence Page. The Anatomy of a Large-Scale Hypertextual Web Search Engine [Online]. Accessed 1 June 2008. Available from http://infolab.stanford.edu/ $\sim$ backrub/google.html.

Calvanese, D. and others. "Data Complexity of Query Answering in Description Logics." Proceedings of the Tenth International Conference (KR-06). n.p., 2006.

Castro, Raul Garcıa. "Benchmarking Semantic Web technology." Ph.D. Dissertation, Universidad Politecnica de Madrid, 2008.

Daconta, Michael C., L. Obrst, and K. Smith. The Semantic Web: A Guide to the Future of XML, Web Services, and Knowledge Management. Indianapolis: John Wiley \& Sons, 2003.

Damjanović, V. and others. "Framework for analysing ontology development tools." SIGSEMIS Bulletin 1, 3 (2004): 43-47.

Dell"Erbra, M. and others. " Exploiting semantic Web technologies for harmonizing e-markets." Information Technology \& Tourism 7, $3(2005)$ : 201-219.
Denny, M. Ontology building: a survey of editing tools [Online]. Accessed 20 July 2008. Available from http://www.xml.com/pub/a/2002/11/06/ontologies.html? page=1,2002.

Ding, Li and others. "Swoogle: a search and metadata engine for the semantic web." Proceedings of the thirteenth ACM international conference on Information and knowledge management. Washington D.C.: ACM, 2004.

Dodds, Leigh. SPARQL Query Forms [Online]. Accessed 15 July 2010. Available from ia.ucpel.tche.br/~lpalazzo/Aulas/TEWS/arq/sparql-query-forms .ppt.

ETP-tourism Ontology [Online]. Accessed 25 August 2010. Available from http://intra.info.uqam .ca/Members/valtchev_p/mbox/ETP-tourism.owl/view

Esmaili, Kyumars Sheykh, and Hassan Abolhassani. "A Categorization Scheme for Semantic Web Search Engines." Proceedings of the IEEE International Conference on Computer Systems and Applications. n.p.: IEEE Computer Society, 2006.

Hebeler, J. and others. Semantic Web Programming. Indiana: Wiley Publishing, Inc., 2009.
Horrocks, I. ,and S. Tessaris. "A conjunctive query language for description logic ABoxes." National Conference on Artificial Intelligence AAAAI/IAAI 2000. n.p., 2000.

Jakkilinki, Roopa, Nalin Sharda, and Imran Ahmad. Ontology-Based Intelligent Tourism Information Systems: An overview of Development Methodology and Applications [Online]. Accessed 19 July 2008. Available from http://140.159.30.23/TES2005 /images/roopa.pdf

Knublauch, Holger and others. A Semantic Web Primer for Object-Oriented Software Developers [Online]. Accessed 19 May 2009. Available from http://www.w3.org/2001/sw/Best Practices/SE/ODSD/

Kolaitis, Phokion G., and Moshe Y. Vardi. "Conjunctive-query containment and constraint satisfaction." Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of Database systems. n.p., 1998.

Lara, R. and others. An evaluation of Semantic Web portals [Online]. Accessed 12 June 2008. Available from http://members.deri.at/~michaels/publications/swportalsIADIS2004. pdf.

LARQ - Free Text Indexing for SPARQL [Online]. Accessed 18 July 2008. Available from http: //jena.sourceforge.net/ARQ/lucene-arq.html.

Leuf, B. The Semantic Web Crafting Infrastructure for Agency. West Sussex: John Wiley \& Sons, 2005.

Passin, Thomas B. Explorer's Guide to the Semantic Web. Greenwich: Manning Publications, 2004.

Pollock, Jeffrey T. Semantic Web For Dummies ${ }^{\circledR}$. Indianapolis: Wiley Publishing, Inc., 2009.
Price Ontology [Online]. Accessed 20 August 2010. Available from http://gaia.fdi.ucm.es/ontolog ies/price.owl

Protégé [Online]. Accessed 13 July 2008. Available from http://protege.stanford.edu/
Rector, Alan. Foundations of the Semantic Web:Ontology Engineering [Online]. Accessed 20 Feb 2010. Available from http://www.cs.man.ac.uk/~rector/Modules/ File:Lect-2-Ontology-building-2008.pdf

Reynolds, D., and Paul Shabajee. SWAD-Europe deliverable 12.1.5: semantic portals -requirem ents Specification [Online]. Accessed 19 July 2008. Available from http://www.w3.or g/2001/sw/Europe/ reports/requirements_demo_2/

Sheth, A., C. Ramakrishnan, and C. Thomas. "Semantics for the Semantic Web: The Implicit, the Formal and the Powerful." International Journal on Semantic Web and Information Systems 1, 1 (2005): 1-18.

STI Innsbruck. OnTour1 [Online]. Accessed 15 August 2009. Available from http://www.deri.at /research/projects/eTourism

Stumme, Gerd, Andreas Hotho, and Bettina Berendt. "Semantic Web Mining: State of the art and future and future directions." Web Semantics: Science ,Services and Agents on the World Wide Web, 4, 2 (2006) : 124-143.

Stuckenschmidt, H., and F. Harmelen. Information Sharing on the Semantic Web. Berlin: Springer, 2005.

TopQuadrant, Inc. Semantic Technology [Online]. Accessed 15 July 2008. Available from http://www.Topquadrant.com/documents/TQ04_Semantic_Technology_Briefing .pdf

Vardi, M. "The complexity of relational queries." ACM SIGACT Symp. on Theory of Computing, Stockholm. n.p., 1982.

W3C. W3C Semantic Web Activity [Online]. Accessed 15 July 2008. Available from http://www w3.org/2001/Sw/.

Werthner, H. "Intelligent Systems in Travel and Tourism." Proceeding of the 18th International Joint Conference on Artificial Intelligence, IJCAI-03, Acapulco, Mexico ,9-15 August 2003. Acapulco: Morgan Kaufmann Publishers Inc., 2003.

## คิวรีที่ใช้ในโปรแกรม

ภาคผนวก ก คิวรีที่ใช้ในโปรแกรมประกอบด้วยสามส่วน คือส่วนที่ 1 คลาสคำตอบที่ ได้จากการรัน Reasoner ในโปรแกรม Protégé ส่วนที่ 2 หน้าจอการประมวลผลโดยโปรแกรมและ ส่วนที่ 3 คิวรีที่ใช้ในการรันข้อมูลจากการทดสอบความซับซ้อน

1. การทดสอบออนโทโลยีที่สร้างด้วย Protégé 3.3.1 โดยการประมวลผลด้วย pellet 2.2.2


ภาพที่ 51 Asserted Hierarchy ที่มีคิวรีที่ทำการทดลอง


ภาพที่ 52 Inferred Hierarchy ที่ได้หลังจากประมวลผลผ่านโปรแกรม Reasoner

จากภาพที่ 51 คลาสของคิวรีที่ใช้ทดสอบได้รับการตั้งชื่อตามคิวรีที่ 1 ถึง 5 เป็น test Q 0 ถึง Q 4 ตามลำดับ ใน Asserted Hierarchy คลาส test Q 0 ถึง Q 4 จะอยู่ภายใต้คลาส Accommodation แสดงถึงว่าต้องการค้นหาตามโดเมน Accommodation เมื่อประมวลผลด้วย Reasoner ตาม OWL ที่ ได้ตั้งไว้ในเรื่องการทดสอบความซับซ้อนคิวรีดังบทที่ 3 แล้วจะได้ผลลัพธ์เป็น Inferred Hierarchy ดังภาพที่ 52 คลาสที่ test Q 0 ถึง Q 4 ไปอาศัยอยู่คือเซตคำตอบของการค้นหาที่พักแรม

## 2. หน้าจอการประมวลผลโดยโปรแกรมในมุมมองผุ้ไช้งาน

## 2.1 หน้าจอการค้นหาตามคิวรีที่ 1 ของ OWL



ภาพที่ 53 หน้าจอการค้นหาตามคิวรีที่ 1 ของ OWL


ภาพที่ 54 หน้าจอผลลัพธ์ตามคิวรีที่ 1 ของ OWL

จากภาพที่ 53 และ 54 เป็นภาพที่ได้จากการประมวลผลคิวรี test Q 0 ของ OWL ใน
โปรแกรมที่สร้างขึ้นโดยผลลัพธ์ที่ได้เป็นเวลาและคำตอบของที่พักแรม
2.2 หน้าจอการค้นหาตามคิวรีที่ 2 ของ OWL


ภาพที่ 56 หน้าจอผลลัพธ์ตามคิวรีที่ 2 ของ OWL

จากภาพที่ 55 และ 56 เป็นภาพที่ได้จากการประมวลผลคิวรี test Q 1 ของ OWL ในโปรแกรมที่สร้างขึ้นโดยผลลัพธ์ที่ได้เป็นเวลาและคำตอบของที่พักแรม
2.3 หน้าจอการค้นหาตามคิวรีที่ 3 ของ OWL


ภาพที่ 58 หน้าจอผลลัพธ์ตามคิวรีที่ 3 ของ OWL

จากภาพที่ 57 และ 58 เป็นภาพที่ได้จากการประมวลผลคิวรี test Q 2 ของ OWL ในโปรแกรมที่สร้างขึ้นโดยผลลัพธ์ที่ได้เป็นเวลาและคำตอบของที่พักแรม
2.4 หน้าจอการค้นหาตามคิวรีที่ 4 ของ OWL


ภาพที่ 59 หน้าจอการค้นหาตามคิวรีที่ 4 ของ OWL


ภาพที่ 60 หน้าจอผลลัพธ์ตามคิวรีที่ 4 ของ OWL

จากภาพที่ 59 และ 60 เป็นภาพที่ได้จากการประมวลผลคิวรี test Q 3 ของ OWL ในโปรแกรมที่สร้างขึ้นโดยผลลัพธ์ที่ได้เป็นเวลาและคำตอบของที่พักแรม
2.5 หน้าจอการค้นหาตามคิวรีที่ 5 ของ OWL

ภาพที่ 61 และ 62 เป็นภาพที่ได้จากการประมวลผลคิวรี test Q 4 ของ OWL ใน โปรแกรมที่สร้างขึ้นโดยผลลัพธ์ที่ได้เป็นเวลาและคำตอบของที่พักแรม


ภาพที่ 61 หน้าจอแสดงการค้นหาคิวรีที่ 5 ของ OWL

| Applyine Semantie web Technoloty to Hua Hin Tourism. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Name | Website | Detasil | Price | Lecation | Inage |
| Arantarz that Hin pesort ie Spa $\frac{1}{}$ en | tpe//wown.anantaracom/ © en | Hestled by the beach on the surrise side of the Gulf of Siam, the spirit of Anantara offers a urique ble⿻d of traditional Thai arctitectural heritage, roctic interion and natural 4 en | $\begin{aligned} & 3800-15000 \\ & \mathrm{Pen} \end{aligned}$ | (13/7 <br> Shetbasem <br> Beach Road <br> 12 en | httpi//muwnihuahin.ga.th /upload/hote/128-p1.jpt 1 en |
| Sailion Fotel 4 en | httpo//wows.sallomhotelhuahin.com/ ben | Take a deep breath and savor the magnificent panoramic view from the Sallom Hotel. From the hotel grounds, puests cant miss the most pectacilar ocean view as far as Tabbeb Mountain and can enjoy itrolling sfong the pristine white sands of the beach for miles. Locals and bangkok residents have floched here for decades to enfoy Sailomis faned seafood restaurnet a fow steps from the beach and to taike a vepliend break from everyday Iffe. A large proportion of the guests are repeat guests whe count on the comfortable and cary atmosphere of the pesceful gardent, the impecciable service, and most of all, the incomparable taste of the freshest, most succulent seafood in Hian Hin. 15 m | $\begin{aligned} & 2,200-4,400 \\ & \mathrm{Een} \end{aligned}$ | Petkacem Road 4 en | hetos //uww,tuashin.go.th /upload/hotel/ 140 -pl.jos 4 m |
| Marriatt Pesort and Spa 9 en | prtpo//imarriottcom/procerty /propertypase/HHCMC 4 en | Huas Hin Marriott Resort it Sos is in secluded world of its own. Located directly on the beach, with lunh wrensery fooing doven to the white sand and blue vaters of the Gulf of 4 en | $\begin{aligned} & 6400-19300 \\ & 4 \text { en } \end{aligned}$ | Petkagen Road tien | hetpit/www,huahin.,gn.th /upload/hotel/127.p1.jog I en |

ภาพที่ 62 หน้าจอผลลัพธ์บางส่วนตามคิวรีที่ 5 ของ OWL

## 3. คิวรีที่ใช้ในโปรแกรม

### 3.1 SPARQL Query คือคิวรีที่ใช้ในการทดสอบความซับซ้อนสำหรับ OWL

 SPARQL Query 1 คือคิวรีที่ 1 ใช้ในการทดสอบความซับซ้อนสำหรับ OWLPREFIX Q:[http://www.owl-ontologies.com/HuaHinProj.owl\#](http://www.owl-ontologies.com/HuaHinProj.owl%5C#)
Select ?Name
WHERE \{?Accommodation Q:hasAccommodationFacility Q:Beach.
?Accommodation $\mathrm{Q}:$ hasAccommodationFacility Q :Refrigerator.
?Accommodation Q:hasAccommodationFacility Q:Air_Conditioning.
?Accommodation $\mathrm{Q}:$ hasCategory $\mathrm{Q}:$ Category_Bangalow.
?Accommodation Q:hasRate Q:Room_Rate_2.
?Accommodation Q:Name ?Name.\}

## SPARQL Query 2 คือคิวรีที่ 2 ใช้ในการทดสอบความซับซ้อนสำหรับ OWL

PREFIX Q:[http://www.owl-ontologies.com/HuaHinProj.owl\#](http://www.owl-ontologies.com/HuaHinProj.owl%5C#)
Select ?Name
WHERE \{?Accommodation Q:hasAccommodationFacility Q:Beach,
?Accommodation $\mathrm{Q}:$ hasAccommodationFacility $\mathrm{Q}:$ Refrigerator.
?Accommodation Q:hasAccommodationFacility Q:Air_Conditioning.
?Accommodation Q:hasCategory Q:Category_Bangalow.
?Accommodation Q:hasLocation Q:HuaHin_Takiab_Road.
?Accommodation Q:hasRate Q:Room_Rate_2.
?Accommodation :Name ?Name.\}

## SPARQL Query 3 คือคิวรีที่ 3 ใช้ในการทดสอบความซับซ้อนสำหรับ OWL

PREFIX Q:[http://www.owl-ontologies.com/HuaHinProj.owl\#](http://www.owl-ontologies.com/HuaHinProj.owl%5C#)
Select ?Name
WHERE \{?Accommodation Q:hasAccommodationFacility Q:Beach .
?Accommodation Q:hasRate Q:Room_Rate_1 .
?Accommodation Q:hasCategory Q:Category_Hotel .
?Accommodation Q:hasLocation Q:Naebkehad .
?Accommodation Q:hasLocationAttraction Q:Yoo_Yen_Restaurant .
?Accommodation Q:hasLocationAttraction Q:Num_chai_Keaw_Pla .
?Accommodation :Name ?Name.\}

## SPARQL Query 4 คือคิวรีที่ 4 ใช้ในการทดสอบความซับซ้อนสำหรับ OWL

PREFIX Q: [http://www.owl-ontologies.com/HuaHinProj.owl\#](http://www.owl-ontologies.com/HuaHinProj.owl%5C#)
SELECT ?Name
WHERE \{?Accommodation Q:hasCategory Q:Category_Bangalow.
?Accommodation Q:hasRate Q:Room_Rate_4 .
?Accommodation Q:hasLocation Q:Takiab .
?Accommodation Q:hasAccommodationFacility Q:Garden .
?Accommodation Q:hasAccommodationFacility Q:Beach .
?Accommodation Q:hasLocationClassification Q:Classification_FoodCourse .
?Accommodation :Name ?Name.\}

## SPARQL Query 5 คือคิวรีที่ 5 ใช้ในการทดสอบความซับซ้อนสำหรับ OWL

PREFIX Q: [http://www.owl-ontologies.com/HuaHinProj.owl\#](http://www.owl-ontologies.com/HuaHinProj.owl%5C#)
SELECT ?Name

## WHERE

\{?Accommodation Q:hasCategory Q:Category_Hotel.
?Accommodation Q:hasLocation Q:Petkasem_Road.
?Accommodation Q:hasAccommodationFacility Q:Thai_Massage .
?Accommodation Q:hasAccommodationFacility Q:Beach .
?Accommodation Q:hasLocationClassification Q:Classification_FoodCourse.
?Accommodation Q:hasLocationClassification Q:Classification_Shopping.
?Accommodation Q:hasLocationAttraction Q:CKlai_Kangwon_Huahin_Palace.
?Accommodation :Name ?Name.\}

### 3.2 SQL Query คือคิวรีที่ใช้ในการทดสอบความซับซ้อนสำหรับ $\operatorname{RDB}$

## SQL Query1 คือคิวรีที่ 1 ใช้ในการทดสอบความซับซ้อนสำหรับ RDB

SELECT acc_name FROM facility AS facility1, facility AS facility2, (accommodationFacility INNER JOIN facility ON facility.fac_id = accommodationfacility.fac_id) JOIN accommodation ON accommodation.acc_id = accommodationfacility.acc_id JOIN accommodationcategoryrate ON accommodation.acc_id = accommodationcategoryrate.acc_id JOIN rate ON accommodationcategoryrate.acc_rate_id = rate.acc_rate_id JOIN category ON accommodationcategoryrate.acc_cat_id = category.acc_cat_id JOIN AccommodationLocation ON AccommodationLocation.acc_id = accommodation.acc_id WHERE facility.fac_name = 'Beach'

AND facility2.fac_name = 'Refrigerator'
AND facilityl.fac_name = 'Air Conditioning'
AND rate.acc_rate_name = 'RoomRate2'
AND category.acc_cat_name = 'Bangalow'

## SQL Query2 คือคิวรีที่ 2 ใช้ในการทดสอบความซับซ้อนสำหรับ RDB

SELECT acc_name
FROM facility AS facility1, facility AS facility2, (
accommodationFacility
INNER JOIN facility ON facility.fac_id = accommodationfacility.fac_id)
JOIN accommodation ON accommodation.acc_id = accommodationfacility.acc_id
JOIN accommodationcategoryrate ON accommodation.acc_id = accommodationcategoryrate.acc_id
JOIN rate ON accommodationcategoryrate.acc_rate_id = rate.acc_rate_id
JOIN category ON accommodationcategoryrate.acc_cat_id = category.acc_cat_id
JOIN AccommodationLocation ON AccommodationLocation.acc_id = accommodation.acc_id
JOIN Location ON Location.loc_id = AccommodationLocation.loc_id WHERE facility fac name $=$ 'Beach'
AND facility2.fac_name ='Refrigerator'
AND facilityl.fac_name $=$ 'Air Conditioning'
AND rate.acc_rate_name = 'RoomRate2'
AND category.acc_cat_name = 'Bangalow'
AND location.loc_name1 = 'HuaHin-Takiab Road'

## SQL Query 3 คือคิวรีที่ 3 ใช้ในการทดสอบความซับซ้อนสำหรับ RDB

SELECT acc_name FROM Attraction AS Attraction1, ( (()(()((attractionlocation INNER JOIN attraction ON attraction.Attraction_id = attractionlocation.Attraction_id) JOIN Location ON AttractionLocation.loc_id = Location.loc_id) JOIN AccommodationLocation ON AccommodationLocation.loc_id = AttractionLocation.loc_id ) JOIN accommodation ON AccommodationLocation.acc_id=accommodation.acc_id) JOIN accommodationFacility On accommodation.acc_id = accommodationfacility.acc_id ) JOIN facility ON facility.fac_id = accommodationfacility.fac_id) JOIN accommodationcategoryrate ON accommodation.acc_id = accommodationcategoryrate.acc_id) JOIN rate ON accommodationcategoryrate.acc_rate_id = rate.acc_rate_id) JOIN category ON accommodationcategoryrate.acc_cat_id = category.acc_cat_id ) WHERE facility.fac_name = 'Beach' AND rate.acc_rate_name = 'RoomRate1' AND category.acc_cat_name = 'Hotel' AND location.Loc_Community =
'Naebkehad' AND attraction.Attraction_Name = 'NumchaiKeawPla' AND attraction1.Attraction_Name $=$ 'Yoo Yen Restaurant'

## SQL Query 4 คือคิวรีที่ 4 ใช้ในการทดสอบความซับซ้อนสำหรับ RDB

SELECT DISTINCT acc_name
FROM facility AS facility1, ( accommodationFacility
INNER JOIN facility ON facility.fac_id=accommodationfacility.fac_id)
JOIN accommodation ON accommodation.acc_id = accommodationfacility.acc_id
JOIN accommodationcategoryrate ON accommodation.acc_id = accommodationcategoryrate.acc_id
JOIN rate ON accommodationcategoryrate.acc_rate_id = rate.acc_rate_id
JOIN category ON accommodationcategoryrate.acc_cat_id = category.acc_cat_id, ( Location INNER JOIN AccommodationLocation ON Location.loc_id = AccommodationLocation.loc_id AND AccommodationLocation.acc_id = accommodation.acc_id)
JOIN AttractionLocation ON ( AttractionLocation.loc_id = AccommodationLocation.loc_id )
JOIN AttractionClassification ON ( AttractionLocation.Attraction_id = AttractionClassification.Attraction_id )
JOIN Classification ON( Glassification.Classification $\mathrm{id}=$
AttractionClassification. Classification_id)
WHERE facility.fac_name $=$ 'Beach' AND facility $1 . f a c \_n a m e=$ 'Garden'
AND rate.acc_rate_name = 'RoomRate4' AND category.acc_cat_name = 'Bangalow' AND
location.Loc_Community = 'Takieb' AND Classification.Classification_Name = 'FoodCourse'

## SQL Query 5 คือคิวรีที่ 5 ใช้ในการทดสอบความซับซ้อนสำหรับ RDB

## SELECT DISTINCT acc_name

FROM facility AS facility1, (accommodationFacility INNER JOIN facility ON facility.fac_id = accommodationfacility.fac_id)
JOIN accommodation ON accommodation.acc_id = accommodationfacility.acc_id
JOIN accommodationcategoryrate ON accommodation.acc_id =
accommodationcategoryrate.acc_id
JOIN rate ON accommodationcategoryrate.acc_rate_id = rate.acc_rate_id
JOIN category ON accommodationcategoryrate.acc_cat_id = category.acc_cat_id
JOIN AccommodationLocation ON AccommodationLocation.acc_id = accommodation.acc_id
JOIN Location ON Location.loc_id = AccommodationLocation.loc_id
JOIN attractionlocation ON attractionlocation.loc_id = AccommodationLocation.loc_id
JOIN attraction ON attractionlocation.attraction_id = attraction.attraction_id

JOIN attractionclassification ON attractionlocation.attraction_id = attractionclassification.attraction_id
JOIN classification ON attractionclassification.classification_id = classification.classification_id WHERE facility.fac_name $=$ 'Beach'
AND facilityl.fac_name = 'Thai Massage'
AND rate.acc_rate_name $=$ 'RoomRate1'
AND category.acc_cat_name = 'Hotel'
AND location.loc_name2 = 'Petkasem Road'
AND classification.classification_name
IN ('FoodCourse', 'Shopping')

## การติดตั้งโปรแกรมที่เกี่ยวข้องกับการเขียนโปรแกรมเว็บเชิงความหมาย

## 1. การใช้งานโปรแกรมตรวจสอบเหตุผลเพื่อตรวจสอบออนโทโลยี

การใช้งานโปรแกรมตรวจสอบเหตุผลหรือโปรแกรม Reasoner เพื่อตรวจสอบว่าออนโทโลยีนั้นมีความซ้ำซ้อนหรือลงรอยกันหรือไม่ (Consistency) ซึ่งมีการใช้งาน 2 แบบคือการใช้ งานผ่านโปรแกรม Ontology Editor และการใช้งานผ่านการเขียนโปรแกรม

วิธีที่ 1 ใช้งานผ่านโปรแกรม Protégé 3.3.1 เริ่มการใช้งานโดยดาวน์โหลดโปรแกรม Reasoner ชื่อ Pellet จาก http://clarkparsia.com/pellet/download/ จากนั้นเรียกใช้ด้วยคำสั่ง pellet DIG เมื่อรันเสร็จแล้วจะได้ค่า port 8081 ที่โปรแกรมทำงาน จากนั้นเปิดโปรแกรม Protégé ในส่วน ของ OWL Preference > Reasoner URL ใส่ค่า http://localhost:8081 ลงไป


ภาพที่ 63 การเรียกใช้ไปแกรม Pellet


ภาพที่ 64 การเรียกใช้ Reasoner ชื่อ Pellet ผ่านโปรแกรม Protégé

การเรียกใช้ค่าพอร์ตของ Reasoner ผ่านโปรแกรมนั้นปกติแล้วค่า port ของแต่ละ โปรแกรมจะต่างกัน เช่นโปรแกรม Racer Pro จะมีค่า port เป็น http://localhost:8080 หากเปลี่ยนตัว ตรวจสอบต้องแก้ค่าพอร์ตด้วย

จากนั้นตรวจสอบว่าโปรแกรมเชื่อมต่อกับ Reasoner อยู่หรือไม่โดยการคลิกที่เมนู OWL> Reasoner Inspector >Refresh หากมีการเชื่อมต่อโปรแกรมแล้วจะปรากฏชื่อของโปรแกรม


ภาพที่ 65 ทดสอบการเชื่อมต่อระหว่าง Protégé และ Pellet Reasoner

เมื่อต้องการตรวจสอบว่าคลาสที่ตั้ง!ว้มีความถูกต้องหรือไม่ ให้คลิกที่ปุ่มต่อไปนี้ที่เมนู รวมหรือคลิกขวาเพื่อตรวจสอบเฉพาะคลาส ตามหน้าที่ของแต่ละเมนู
? $?$ Check Consistency
C. Classify Taxonomy

Iv Compute Inferred Type สำหรับเมนูนี้เมื่อคลิกขวาที่คลาสจะปรากฏเป็น Compute Individuals belonging to class ใช้สำหรับหาอินสแตนซ์ที่เป็นคำตอบของคำถาม


ภาพที่ 66 ผลลัพธ์เมื่อผ่านการตรวจ Check Consistency
 ว่าสิ่งที่ตรวจสอบ Consistency หรือไม่ ภาพที่ 66 เป็นตัวอย่างผลลัพธ์การตรวจ Consistency แบบ หนึ่ง หากตรวจทีละคลาสโปรแกรมจะประกาศชื่อคลาสนั้นด้วย หรือในกรณีที่ Inconsistency ผู้ใช้ โปรแกรมต้องกลับไปตรวจสอบการออกแบบออนโทโลยีอีกครั้งหนึ่ง ภาพที่ 67 เมื่อตรวจ Classification แล้วเสร็จ โปรแกรมจะแสดงหน้าจอแจ้งผลการตรวจ ภาพที่ 68 เป็นการรันโปรแกรมตรวจสอบเหตุผลในโปรแกรม Protégé ซึ่งกรณีที่คลาส ที่ตรวจสอบมีอินสแตนซ์ที่คิวรีได้ให้เลือกตรวจสอบ Inferred Type ด้วยโปรแกรมจะหาคำตอบ ของคลาสโดยแสดงอินสแตนซ์คำตอบ

ภาพที่ 69 เป็นการตรวจสอบเหตุผลในโปรแกรม Protégé แล้วพบว่าคลาสที่ตรวจสอบมี ข้อผิดพลาด หรือสร้างผิดกฎ วิธีแก้คือต้องกลับไปตรวจสอบคลาสที่สร้างอีกครั้งหนึ่ง


ภาพที่ 68 ผลการรันหาคำตอบที่เป็นอินสแตนซ์ของคำถาม


ภาพที่ 69 ผลการรันกรณีที่คลาส Inconsistency


Model model $=$ ModelFactory.createOntologyModel( PelletReasonerFactory.THE_SPEC, model );
model.read( "http://example.org/ontology" );
/* ... ทุกๆ โมเดลต้องอยู่ในรูป Inferred Graph ... */
((PelletInfGraph) model.getGraph()).classify();
model.query (... );

เนื่องจากการ Classify การทำงานหนึ่งๆ ประกอบด้วย การ โหลดฐานความรู้ การจัด กลุ่มคลาส และการหาอินสแตนซ์ ดังนั้นอาจต้องมีหลายขั้นตอนกว่าจะทำงานเสร็จสิ้น ดังนั้นไม่ จำเป็นต้องเรียกใช้เพื่อตรวจสอบทุกๆ การกระทำแต่ควรเรียกใช้เมื่อมีการปรับปรุงงานและเมื่อมี การคิวรีเพื่อหาคำตอบจะเหมาะสมมากที่สุด

ข้อควรระวังในการเรียกใช้งานผ่านการเขียนโปรแกรมคือ Pellet ยังไม่รองรับการ ทำงานแบบมัลติเธรด ควรหลีกเลี่ยงการเรียกใช้ผ่านการโปรแกรมในสถานการณ์ต่อไปนี้ การตั้งค่า คิวรีให้ซับซ้อนเกินไปแบบที่ไม่กำหนดแม้แต่ชื่อคอนเซปต์ การใช้ Reasoning แบบเพิ่มขึ้นตาม

สถานการณ์ และการใช้คิวรีด้วย Posited Model ในกรณีเหล่านี้ให้ใช้แบบไม่มีการ concurrent model access ใดๆ เพราะโปรแกรมยังไม่สามารถจัดการกับสถานการณ์เหล่านี้ได้อย่างสมบูรณ์

## 2. การติดตั้ง RDF Java API

การติดตั้งโปรแกรม Jena เพื่อให้โปรแกรม Java สามารถติดต่อโมเดลของออนโท โลยี และนำมาแสดงข้อมูล RDF/OWL บนเบราเซอร์ได้ ก่อนทำการติดตั้งต้องมี J2SDK และ Apache Tomcat ที่เครื่องเซิร์ฟเวอร์แล้วจึงเริ่มการติดตั้ง JENA Library ตามขั้นตอนดังนี้

ดาวน์โหลด Jena-2.5.7.zip จาก http://jena.sourceforge.net/ แล้ว Unzip Jena-2.5.7.zip นำโฟลเดอร์ lib จาก Jena-2.5.7 ไปไว้ในโฟลเดอร์ WEB-INF ซึ่งภายใน lib ประกอบด้วย
/lib/antlr-2.7.5.jar
/lib/arq.jar
/lib/arq-extra.jar
/lib/commons-logging-1.1.1.jar
/lib/concurrent.jar

/lib/jenatest.jar
/lib/json.jar
/lib/junit.jar
/lib/log4j-1.2.12.jar
/lib/lucene-core-2.3.1.jar
/lib/stax-api-1.0.jar
/lib/wstx-asl-3.0.0.jar
/lib/xercesImpl.jar
/lib/xml-apis.jar

รวบรวมเป็น Library เพื่อเรียกใช้ใน Java Editor เช่น Netbean หรือ Eclipse ได้ ในส่วน ของการเขียนภาษา JSP เพื่อติดต่อกับไฟล์ RDF Document ประกอบไปด้วยส่วนของโปรแกรมใน การติดต่อดังนี้

ส่วนการประกาศใช้ Jena Library ถ้าใช้ JSP ให้ประกาศตามรูปแบบJSP คือ $<\%$ @page import $=\ldots . \%>$ หรือถ้าประกาศใน Servlet ให้ประกาศตามรูปแบบ Java ซึ่งมีรายชื่อที่เรียกใช้ดังนี้ ดังนี้ //ขั้นตอนที่ 1. อิมพอร์ตไลบรารี่
import com.hp.hpl.jena.ontology.OntModel; import com.hp.hpl.jena.query.Query; import com.hp.hpl.jena.query.QueryExecution; import com.hp.hpl.jena.query.QueryExecutionFactory; import com.hp.hpl.jena.query.QueryFactory; import com.hp.hpl.jena.query.ResultSetFormatter; import com.hp.hpl.jena.query.larq.IndexBuilderString; import com.hp.hpl.jena.query.larq.IndexLARQ; import com.hp.hpl.jena.query.larq.LARQ; import com.hp.hp1.jena.rdf.model.Model; import com.hp.hpl.jena.rdf.model.ModelFactory;
//ขั้นตอนที่ 2 รับพารามิเตอร์จากหน้าจอค้นหา //ขั้นตอนที่ 3 สร้างโมเดลแล้วเรียกใช้คิวรีเพื่อค้นหา Model model $=$ ModelFactory.createDefaultModel(); // อ่านและทำดัชนีอินเด็กซ์ของเท็กทั้งหมด IndexBuilderString larqBuilder = new IndexBuilderString(); // ทำดัชนีประโยคที่สร้างลงโมเดล model.register(larqBuilder);
//เรียกใช้โมเดลที่สร้างไว้
FileManager.get().readModel(model, OntologyInfo.hhOntoOWL);
//เสร็จสิ้นการทำดัชนี
larqBuilder.closeWriter();
model.unregister(larqBuilder);
//สร้างและเข้าถึงดัชนีที่สร้างไว้
IndexLARQ index = larqBuilder.getIndex();
//ตัวอย่างคิวรีที่ใช้ในการค้นหาทั่วไป
//Case 1. Default Search
//ประกาศพ Prefix
String queryString = "PREFIX Q:[http://www.owl-ontologies.com/HHOntoTourism13\#](http://www.owl-ontologies.com/HHOntoTourism13%5C#) "

+ " PREFIX rdf:[http://www.w3.org/1999/02/22-rdf-syntax-ns\#](http://www.w3.org/1999/02/22-rdf-syntax-ns%5C#)"
+ "PREFIX rdfs:[http://www.w3.org/2000/01/rdf-schema\#](http://www.w3.org/2000/01/rdf-schema%5C#)"
+ "PREFIX owl:[http://www.w3.org/2002/07/owl\#](http://www.w3.org/2002/07/owl%5C#)"
+ " Select DISTINCT "

+ ShowOption
+ " WHERE "
+" \{"
//รับตัวแปรสำหรับคิวรีที่ถาม
//เช่น ?Accommodation Q:hasCategory Q:Hotel.
+ queryString 1
+ " ?Accommodation"
//คิวรีค่าที่ต้องการแสดง

$$
\begin{aligned}
& + \text { queryString2 } \\
& \left.+{ }^{\prime \prime}\right\} \text { "; }
\end{aligned}
$$

//ส่วนการประมวลผลคิวรีแบบ Select
//เริ่มการจับเวลารันคิวรี คิวรีแบ่งเป็น 4 แบบกรรีที่ต้องการใช้ Jena และ LARQ ให้ประกาศ execute
//ดังนี้ Case 1: Select Form
Query query = QueryFactory.create(queryString);
query.serialize(outt);
QueryExecution qExec = QueryExecutionFactory.create(query, model);
LARQ.setDefaultIndex(qExec.getContext(), index);
// Case 2: Ask Form
Query query = QueryFactory.create(queryString) ;
QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
boolean result $=$ qexec.execAsk() ;
qexec.close() ;
// Case 3: Construct Form
Query query = QueryFactory.create(queryString);
QueryExecution qexec = QueryExecutionFactory.create(query, model);
Model resultModel = qexec.execConstruct();

// Case 4: DESCRIBE Form
Query query = QueryFactory.create(queryString);
QueryExecution qexec = QueryExecutionFactory.create(query, model); Model resultModel = qexec.execConstruct(); qexec.close();

## //สิ้นสุดการจับเวลารันคิวรี

//ขั้นตอนที่ 4ส่วนการแสดงผล ในที่นี้ส่งออกเป็นรูปแบบ XML แล้วนำ XSLT มาแปลงเป็น HTML //แสดงผล Select Forms

$$
\text { stext }=\text { String.valueOf(ResultSetFormatter.asXMLString(qExec.execSelect())); }
$$

```
//แสดงผล Ask Forms
//stext = String.valueOf(ResultSetFormatter.asXMLString(result));
```


## 3. การติดตั้งโปรแกรมที่อยู่ในแผ่นผลงานวิทยานิพนธ์

เปิดโลคอลโฮตส์ที่อยู่ในเครื่องเซิรฟเวอร์แล้วคลิกที่ Tomcat Manager


ภาพที่ 70 หน้าจอโลคอลโสสต์ในเครื่องเซิรฟเวอร์

จากนั้นเลื่อนหน้าจอไปที่ส่วน "Deploy" จากนั้นคลิกที่ปุ่มเรียกดู ไปที่โฟลเดอร์ที่เก็บ
ไฟล์ .war ที่ได้สร้างไว้ แล้วคลิก ปุ่ม Deploy


ภาพที่ 71 หน้าจอที่ใช้สำหรับ Deploy ไฟล์ .war

ในส่วนแอพพลิเคชันจะพบชื่อเว็บแอพพลิเคชันที่เราเพิ่ง deploy ไปคลิกที่ลิงค์เพื่อเข้าสู่ หน้าแรก


Tomcat Web Application Manager




ภาพที่ 73 เข้าสู่หน้าแรกของระบบ

## 4. การใช้งานโปรแกรมที่พัฒนา

จากภาพที่ 73 หน้าจอในส่วนของผู้ดูแลระบบประกอบด้วย หน้าจอสมัครเข้าใช้ระบบ หน้าจอเข้าสู่ระบบ หน้าจอลืมรหัสผ่าน หน้าจอค้นหา และหน้าจอเอกสารช่วยเหลือ แต่ละหน้าจอ และการใช้งานสามารถอธิบายด้วยภาพและรายละเอียดได้ดังต่อไปนี้


106\%


OK Canoal


ภาพที่ 74 เมื่อคลิกปุ่ม Sign in จะพบหน้าจอเข้าสู่ระบบ


ภาพที่ 75 เมื่อคลิกปุ่ม Sign up จะพบหน้าจอสมัครสมาชิก


ภาพที่ 76 คำเตือนต่างๆ เมื่อไม่ได้ใส่ข้อความในการสมัครสมาชิก


ภาพที่ 77 เมื่อสมัครเข้าใช้ระบบสำเร็จจะมีอีเมล์มาแจ้งเพื่อยืนยัน


ArCoSeh Mal Server Feemare, Versian 1.: (L.8.8.2)
LAcha Sothince Devign. 1994.2000

ภาพที่ 78 รับอีเมล์แล้วคลิกลิงค์เพื่อยืนยัน


ภาพที่ 79 ลงทะเบียนสมาชิกสำเร็จ


Fartat Fuwwara



ภาพที่ 81 เมื่อเข้าสู่ระบบแล้วสามารถใช้เมนู FTPClient เพื่ออัพโหลด ดาวน์โหลดข้อมูลได้


ภาพที่ 82 เข้าสู่ระบบ Ontology Manager จะพบการบรรยายรายละเอียดของโดเมน

ผู้ใช้สามารถตั้งค่า Workspace ในเครื่องเซิร์ฟเวอร์ของตนเพื่อบอกที่เก็บไฟล์ออนโทโล ยีได้ที่เมนู SETWORKSPACE เป็นการตังค่าครังงเรกในการท่างาน ส่วนไฟล์เว็บที่ใหลดมาก็ สามารถตั้งค่าพาธที่เก็บไฟล์เหล่านั้นได้ที่ Temp Host File Work Space

## SET WORKSPACE

Server Ontology
Workspace
Temp Host File
Workspace

ภาพที่ 83 เมนูตั้ตค่า WORKSPACE

จากภาพที่ 83 และ 84 การกำหนดค่า Work Space ที่เซิร์ฟเวอร์ผู้ใช้กำหนดค่าพาธแล้ว กดปุ่ม Set เพื่อให้ระบบทราบว่าขณะนี้ผู้ใช้ระบบต้องการใช้และทำงานกับออนโทโลยีโดเมนใดใน ระบบส่วนการกำหนดพื้นที่ชั่วคราวให้แก่เว็บที่โหลดมานั้นเนื่องจากบางครั้งผู้ใช้ไม่ได้ตั้งค่าทีละ ไฟล์แต่ตั้งค่าครั้งละหลายไฟล์ เป็นการช่วยระบุพื้นที่การทำงานขณะนั้นแก่ผู้ใช้ และช่วยให้ โปรแกรมทำงานกับไฟล์ในขณะนั้นอย่างถูกต้อง

set Sever vespact
set Temp Hent Varpace

Set sermerpace $x$ mi


## Now, Youn Temp Host Sogce is C://AppSecvi/www//webstid/huahin go.ty/ien

Sectenuspace mal


ภาพที่ 84 การกำหนดค่า Work Space ที่เซิร์ฟเวอร์และกำหนดพื้นที่โฮตส์ชั่วคราวของเว็บ
การตั้งค่าโดเมนของออนโทโลยีทั้งหมดที่ใช้ในระบบเป็นการตั้งค่าครั้งเดียวเช่นกันโดย ไปที่ Set/Ontology File 9รรากดหน้ดจอดังภาพที่ 85 เพิ่มโตเมน Transportation แล้วระุพาธ ให้ ระบบดังภาพที่ 86 ตรวจการทำงานในภาพที่ 87 ในตารางด้านบนที่อยู่หน้าเดียวกัน หรือคลิกลิงค้ ของ Ontofile เพื่อดูแบบ XML ดังภาพที่ 88


ภาพที่ 85 หน้าจอตั้งค่าออนโทโลยีของโดเมน

See ontofile.xml

| insert to ontofile.XML |  |  |
| :---: | :---: | :---: |
| ID | 12 |  |
| Domain | Tra |  |
| UrIPath | Transportation | เจิบกท- |
|  | Set | set |

ภาพที่ 86 การเพิ่มโดเมนให้ระบบ
SET ONTOLOGY FLLE $\mid$ NAHOTATION $\mid$ WEB EXTRACTOR $\mid$ SET WORKSPACE $\mid \square \quad$ [SAOCCh]L_
iet OWL. ontology Configuration.

| ID | Ontology Name | Location in Server | File Name |
| :---: | :---: | :---: | :---: |
| 1 | Accommodation | http://localhost:8084/www.hhtourism.com/03ontologyManager/data/Accommodation.owi | Accommodation.owl |
| 2 | Activity | http://localhost:8084/www.hhtourism.com/03ontologyManager/data/Activity.owl | Activity.owl |
| 3 | Attraction | \|htte://localhost:8084/www.hhtourism.com/03ontologyManager/data/Attraction.owl | Attraction.owl |
| 4 | ContactData | http://localhost:8084/www.hhtourism.com/03ontologyManager/data/ContactData.owl | ContactData.owl |
| 5 | Event | http://localhost:8084/www.hhtourism.com/030ntologyManager/data/Event.owl | Event.owl |
| 6 | Facility | http://localhost:8084/www.hhtourism.com/03ontologyManager/data/Fadility.owl | Facility.owl |
| 7 | Location | hhttp://localhost:8084/www.hhtourism.com/03ontologyManager/data/Location.owl | Location.owl |
| 8 | Period | http://localhost:8084/www.hhtourism.com/03ontologyManager/data/Period.owl | Period.owl |
| 9 | OtherCriteria | http://localhost:8084/www.hhtourism.com/03ontologyManager/data/OtherCriteria.owl | OtherCriteria.owl |
| 10 | Site | http://localhost:8084/www.hhtourism.com/03ontologyManager/data/site.owl | Site.owl |
| 11 | Subsidiary | http://localhost:8084/www.hhtourism.com/03ontologyManager/data/Subsidiary.owl | Subsidiary.owl |
| 12 | Transportation | hittp://localhost:8084/www.hhtourism.com/03ontologyManager/data/Transportation.owl | Transportation.owl |

ภาพที่ 87/ตรวจสอบโดเมนที่เพิ่มเล้วในรูปตาราง

</UriPath>
</OntologyName>
$-\langle$ OntologyName id=" 8 " $\rangle$
<FileName>Period </FileName>
- <UrIPath>
C:/Users/noo/Documents/NetBeansProjects/www.hhtourism.com/web/03ontologyManager/data/Period.owl
</UrlPath>
</OntologyName>
- <OntologyName id="9">
<FileName>OtherCriteria </FileName>
- <UrIPath>
C:/Users/noo/Documents/NetBeansProjects/www.hhtourism.com/web/03ontologyManager/data/OtherCriteria.owl
</UrIPath>
</OntologyName>
- <OntologyName id=" $\left.10^{*}\right\rangle$
<FileName>Site </FileName>
- <UrIPath>
C:/Users/noo/Documents/NetBeansProjects/www.hhtourism.com/web/03ontologyManager/data/Site.owl
</UrIPath>
</OntologyName>
- <OntologyName id="11">
<FileName>Subsidiary </FileName>
- <UrIPath>
C:/Users/noo/Documents/NetBeansProjects/www.hhtourism.com/web/03ontologyManager/data/Subsidiary.owl
</UrIPath>
-(Ontology*)ame>
- <OntologyName id="12">
<FileName> Transportation</FileName>
- <UrIPath>
C:/Users/noo/Documents/NetBeansProjects/www.hhtourism.com/web/03ontologyManager/data/Transportation.owl
s/IIrIPath>
ภาพที่ 88 การตรวจสอบค่าที่เพิ่มในมุมมอง XML

```
& A http//localhost:8004/mwwhhtourismcom/03ontologyManager/data/Accommodationowl
```



```
-<rdf:RDF xml:base="http://www.owl-ontologies.com/Accommodation.owl">
    -<owl:Ontology rdf:about="">
        <rdfs:label xml:lang="en">Accommodation</rdfs:label>
        <rdfs:comment xml:lang="en">This ontology was developed for the thesis.</rdfs:comment>
        </owl:Ontology>
    -<0wl:Class rdf:ID="Accommodation">
        -<rdfs:comment xml:lang="en">
            This class is a concrete representation of the concept of accomodations.
            </rdfs:comment>
            <rdfs:label xml:lang="en">Accommodation</rdfs:label>
            <rdfs:label xml:lang="th">
        </owl:Class>
    - <owl:Class rdf:ID="Resort">
            <rdfs:comment xml:lang="en">Category Resort</rdfs:comment>
            <rdfs:label xml:lang="en">Resort</rdfs:label>
            <rdfs:label xml:lang="th">ร゙สดร์ท</rdfs:label>
            <rdfs'snhClass@f rif:resonrre="##Acrommodation"/>
```

ภาพที่ 89 เปิดดูไฟล์จากพาธ Location in Server ในภาพที่ 87


| ANNOTATION |
| :--- |
| Accommodation |
| Activity |
| Attraction |
| ContactData |
| Event |
| Facility |
| Location |
| Period |
| OtherCriteria |
| Site |
| Subsidiary |
| Transportation |

ภาพที่ 90 เมนูแสดงถึงไฟล์โดเมนในออนโทโลยีที่ผู้ใช้สามารถใส่รายละเอียดได้

เลือกเมนู Accommodation เพื่อเติมข้อมูลลงไฟล์โดเมน Accommodation ที่ Server


ภาพที่ 91 หน้าจอแสดงการเติมข้อมูลลง ไฟล์โดเมน Accommodation


ภาพที่ 92 เติมรายละเอียดของที่พักแรมลงในฟอร์ม

nsert/ Updater Delete "Acenmmodation' Class

Now, Your Server Work Space here->

| rdf:ID | Category Name | Accommodation Name | Image | Website | URL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Hotel_0000000001 | Hotel | Anantara Resort A Sps |  | Wuw,Anantaratcom | htro://localhost/website/huahin.po.th len/tuavel stay detail 33073657 htm |
| Hotel_0000000002 | Hotel | Dune Hun Hin Hotel |  | wwwdunehuahin.com | httD:///localhost/website/huahin.go.th len/travel stay detail E0EC1664 |
| Hotel_0000000003 | Hotel | Marriott Resort. \& Spa |  | bitp://www.marriett.com incoperty/propertyages IHHOMS | hrtp:i/ligcalhost/website/hushin.go.th len/travel stay detail caC63AE6 |

Sse Accommotation.om


```
    <owl:DataRange>
+<Hotel rdf:ID='Hotel_0000000001>>-Hotel>
4-Hotel rdf:ID="Hotel_0000000002">- Hotel>
- <Hotel rdf:ID='Hotel 0000000003>
    cmame>Marriott Resort & Spaciname>
    - <mage>
        hrte:/localhost website huahin go th upload hotel127.pl.jpe
        <image>
    -<website>
        lutp//wwwmarriott.com/property/propertypage HHQMC
        </webxite>
    - curl>
            http//localbost/website huahin_go thicn/travel_stay_detail_C2C63AE6
        <url>
        <starRating>5<istarRating>
    -<description>
            Hua Hin Marriott Resort & Spa is in secluded world of its own. Located darectly on the beach, with lush greenery flowing down to the white
            sand and blue waters of the Gulf of Thailand. The architecture of the reaort combines space, color and natural light with traditional Thai design
            themes to create a sense of harmony with nature. Warm, fragrant breezes druft through the open air lounges and restaurants. The center of Huas
            Hin town with its shops, restaurants and soff adventure activities is within ten minutes walkine distance. The resorts apa, an oasis set amidat
            tropical gardens and a man-made lagoon, offers a sancruary of privacy and tranquiliry. Hua Hin Marriott Resort & Spa is a luxurious haven that
            provides a perfect retreat from the stress of dasly life.
            <description>
            <Location>Peficasem_Road</Location>
            <Phone>032 511881-4< Phone>
            <Address>107/1 Phetkasem Beach Road Hua Hin, 77110 Thailand</Addreus>
            <averageP'rice>6400-19500-/averagePrice>
    CHatel>
crdf:RDF
```

ภาพที่ 94 ไฟล์ Accommodation.owl ที่ Server ได้รับการอัพเดตที่ท้ายไฟล์


ภาพที่ 95 เว็บเพจที่มีการอธิบายรายละเอียดแล้ว


ภาพที่ 96 การเรียกใช้หน้าจอ Search เพื่อค้นหาคำสำคัญ

ผู้ใช้ระบุคำสำคัญที่ต้องการค้นหาจากนั้นกดปุ่ม Search จะปรากฏผลลัพธ์การค้นหา


ภาพที่ 97 ตัวอย่างผลลัพธ์การค้นหาแบบระบุคำสำคัญ


ภาพที่ 98 ค้นหาแบบก้าวหน้าตามคลาสและคุณสมบัติหลังจากที่กดลิงค์ Ontology Search


ภาพที่ 99 ประเภทของเงื่อนไขใน Ontology Search

ตัวอย่างการใช้งานโปรแกรมแบบระบุเงื่อนไขเพื่อค้นหาสถานที่เตรียมประชุม


ภาพที่ 101 ผลลัพธ์ที่ได้จากการค้นหาด้วยสิ่งอำนวยความสะดวก

ตัวอย่างการใช้งานโปรแกรมแบบระบุเงื่อนไขเพื่อค้นหาที่พักแรมในบริเวณนั้น



ภาพที่ 103 ตัวอย่างที่ได้จากคิวรีและแสดงเฉพาะคอลัมน์ที่ต้องการ

ตัวอย่างการค้นหาแบบระบุสถานที่ใกล้เคียงเพื่อค้นหาที่พักแรมในบริเวณนั้น


ภาพที่ 104 การค้นหาที่พักแรมโดยระบุสถานที่ใกล้เคียง

จากภาพที่ 104 ได้ผลลัพธ์การค้นหาที่พักแรมโดยระบุสถานที่ใกล้เคียงดังภาพที่ 105


ภาพที่ 105 ผลลัพธ์ที่ได้จากการค้นหาที่พักแรมโดยระบุสถานที่ใกล้เคียง


ภาพที่ 106 การใช้โปรแกรมค้นหาสถานที่ท่องเที่ยวที่ใกล้เคียงกับที่พักแรม
จากภาพที่ 106 เป็นการใช้ประโยชน์จากคุณสมบัติอินเวอร์สของโดเมนและคุณสมบัติ

ตัวอย่างการค้นหาที่พักแรม โดยระบุสถานที่ท่องเที่ยวใกล้เคียง


ภาพที่ 108 ผลลัพธ์ที่พักแรมจากคิวรีที่ระบุสถานที่ท่องเที่ยวใกล้เคียง

ตัวอย่างการค้นหาที่พักแรมของนักท่องเที่ยวแบบประหยัดที่ระบุราคาและกิจกรรมที่ที่ พักแรมนั้นมีบริการ


ภาพที่ 109 การค้นหาที่พักแรมของนักท่องเที่ยวแบบประหยัดที่ระบุราคาและกิจกรรม


ภาพที่ 110 ผลลัพธ์การค้นหาที่พักแรมของนักท่องเที่ยวแบบประหยัด

## แหล่งข้อมูลที่ใช้ในงานวิจัย

ภาคผนวก ค นำเสนอคำร้องที่ใช้ในการขอข้อมูลเกี่ยวกับเว็บไซต์ของเทศบาลเมืองหัวหิน รูปแบบตารางฐานข้อมูลที่ไได้รับ รูปแบบข้อมูลเอกสารที่ได้รับและเว็บไซต์ที่พักแรมที่ใช้ในงานวิจัย


ภาพที่ 111 สำเนาคำร้องขอข้อมูลข่าวสารจากเทศบาลเมืองหัวหิน

| $\begin{aligned} & \frac{\text { hot }}{\text { el.j }} \\ & \hline \end{aligned}$ | hotel | $\frac{\mathrm{ca}}{\frac{1}{d}}$ | $\begin{aligned} & \frac{\mathrm{zo}}{\mathrm{ne}} \\ & \frac{1 d}{\mathrm{id}} \end{aligned}$ | $\begin{aligned} & \text { hot } \\ & \text { el.s. } \\ & \text { tar. } \end{aligned}$ | $\frac{\frac{\text { reco }}{\text { mme }}}{\frac{\text { nd }}{}}$ | $\begin{aligned} & \frac{\text { pro }}{\text { moti }} \\ & \frac{\text { on }}{} \end{aligned}$ | D <br> í <br> c | $\begin{aligned} & \frac{\text { loc }}{\text { ati }} \\ & \frac{\text { on }}{} \end{aligned}$ | tel | 4 $\frac{4}{1}$ 1 | $\begin{array}{\|l\|} \hline \frac{\mathrm{m}}{\mathrm{a}} \\ \frac{\mathrm{p}}{} \\ \hline \end{array}$ | $\begin{aligned} & \frac{\mathrm{rop}}{\mathrm{~m} r} \\ & \frac{1}{\text { ate }} \end{aligned}$ | $\begin{aligned} & \frac{\text { Ian }}{\text { qua }} \\ & \frac{\text { ge }}{} \\ & \hline \end{aligned}$ | $\begin{aligned} & \frac{\text { is rec }}{\text { omme }} \\ & \text { nd } \end{aligned}$ | $\frac{\frac{i s}{\text { acti }}}{\frac{\mathrm{ve}}{2}}$ | $\begin{aligned} & \frac{\text { is }}{\text { sho }} \\ & \underline{w} \end{aligned}$ | $\begin{aligned} & \frac{\text { sho }}{} \\ & \frac{w \cdot \mathrm{fr}}{\mathrm{om}} \\ & \hline \end{aligned}$ | $\frac{\text { sho }}{\text { wato }}$ | $\frac{\text { post dat }}{\mathrm{e}}$ | $\frac{\mathrm{pOS}}{\frac{\mathrm{tb}}{\mathrm{x}}}$ | $\frac{\text { modify d }}{\text { ate }}$ | $\begin{aligned} & \frac{\text { mod }}{\text { ifx }} \\ & \hline \text { bx } \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 21 เกส เฮ้าส์ | 4 | 13 | 3 |  |  |  |  | $\begin{aligned} & \hline 032 \\ & 53124 \\ & 3 \end{aligned}$ |  |  | $\begin{aligned} & 300- \\ & 500 \end{aligned}$ | TH |  | 1 | 1 | $\begin{aligned} & 2005 \\ & -10- \\ & 30 \end{aligned}$ | $\begin{aligned} & 2006 \\ & -10- \\ & 30 \end{aligned}$ | $\begin{aligned} & 2005-10- \\ & 30 \\ & 23: 13: 02 \end{aligned}$ | $\begin{aligned} & \text { ad } \\ & \text { mi } \end{aligned}$ | $\begin{aligned} & 2005-10- \\ & 30 \\ & 23: 13: 02 \end{aligned}$ | $\begin{aligned} & \text { adm } \\ & \text { in } \end{aligned}$ |
|  | กบาล ถมอร์ รี สอร์ท | 2 | 25 | 3 |  |  |  |  | $\begin{aligned} & 032 \\ & 52101 \\ & 1-3 \end{aligned}$ |  |  | $\begin{aligned} & 320 \\ & 0- \\ & 360 \\ & 0 \\ & \hline \end{aligned}$ | TH |  | 1 | 1 | $\begin{aligned} & 2005 \\ & -10- \\ & 30 \end{aligned}$ | $\begin{aligned} & 2006 \\ & -10- \\ & 30 \end{aligned}$ | $\begin{aligned} & 2005-10- \\ & 30 \\ & 23: 13: 02 \end{aligned}$ | $\begin{aligned} & \mathrm{ad} \\ & \mathrm{mi} \\ & \mathrm{n} \end{aligned}$ | $\begin{aligned} & 2005-10- \\ & 30 \\ & 23: 13: 02 \end{aligned}$ | $\begin{aligned} & \text { adm } \\ & \text { in } \end{aligned}$ |
|  | กอล์ฟ อินน์ |  | 11 | 3 |  |  |  |  | $\begin{aligned} & 032 \\ & 51247 \\ & 3-4 \end{aligned}$ |  |  | $\begin{aligned} & 700- \\ & 800 \end{aligned}$ | TH |  | 1 | 1 | $\begin{aligned} & 2005 \\ & -10- \\ & 30 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2006 \\ & -10- \\ & 30 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2005-10- \\ & 30 \\ & 23: 13: 02 \end{aligned}$ | $\begin{aligned} & \mathrm{ad} \\ & \mathrm{mi} \\ & \mathrm{n} \end{aligned}$ | $\begin{aligned} & 2005-10- \\ & 30 \\ & 23: 13: 02 \end{aligned}$ | $\begin{aligned} & \text { adm } \\ & \text { in } \end{aligned}$ |
|  | เขาเต่า |  | 17 | 3 |  |  |  |  | $\begin{aligned} & 032 \\ & 57229 \\ & 0 \end{aligned}$ |  |  | $\begin{aligned} & 500- \\ & 700 \end{aligned}$ | TH |  | 1 | 1 | $\begin{aligned} & 2005 \\ & -10- \\ & 30 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2006 \\ & -10- \\ & 30 \end{aligned}$ | $\begin{aligned} & 2005-10- \\ & 30 \\ & 23: 13: 02 \end{aligned}$ | $\begin{aligned} & \mathrm{ad} \\ & \mathrm{mi} \\ & \mathrm{n} \end{aligned}$ | $\begin{aligned} & 2005-10- \\ & 30 \\ & 23: 13: 02 \end{aligned}$ | $\begin{aligned} & \text { adm } \\ & \text { in } \end{aligned}$ |
|  | คริสตัล วิลล่า |  |  | 3 |  |  |  |  | $\begin{aligned} & 032 \\ & 51294 \\ & 2 \\ & \hline \end{aligned}$ |  |  |  | TH |  | 1 | 1 | $\begin{aligned} & 2005 \\ & -10- \\ & 30 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2006 \\ & -10- \\ & 30 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2005-10- \\ & 30 \\ & 23: 13: 02 \end{aligned}$ | $\begin{aligned} & \text { ad } \\ & \mathrm{mi} \\ & \mathrm{n} \\ & \hline \end{aligned}$ | $\begin{aligned} & 2005-10- \\ & 30 \\ & 23: 13: 02 \end{aligned}$ | $\begin{aligned} & \text { adm } \\ & \text { in } \end{aligned}$ |
|  | คอนโด เซน |  |  | 3 |  |  |  |  | $\begin{aligned} & 032 \\ & 53278 \\ & 3 \\ & \hline \end{aligned}$ |  |  |  | TH |  | 1 | 1 | $\begin{aligned} & 2005 \\ & -10- \\ & 30 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2006 \\ & -10- \\ & 30 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2005-10- \\ & 30 \\ & 23: 13: 02 \end{aligned}$ | $\begin{aligned} & \text { ad } \\ & \mathrm{mi} \\ & \mathrm{n} \\ & \hline \end{aligned}$ | $\begin{aligned} & 2005-10- \\ & 30 \\ & 23: 13: 02 \end{aligned}$ | $\begin{aligned} & \text { adm } \\ & \text { in } \end{aligned}$ |

ภาพที่ 112 ตัวอย่างตารางที่พักแรมต้นฉบับที่ได้รับจากเทศบาลเมืองหัวหิน


ภาพที่ 113 ส่วนหนึ่งของสำเนาข้อมูลข่าวสารที่ได้รับจากเทศบาลเมืองหัวหิน

## ตารางที่ 34 เว็บไซต์ที่ใช้ค้นหาข้อมูลมาใส่ออนโทโลยี

| No. | Name | Website |
| :---: | :---: | :---: |
| 1 | A \& B Hotel | www.abguesthouse.com |
| 2 | Ablehouse (old DogHouse) | huahin.go.th |
| 3 | Air Force Resident Borfai | www.borfai-rtaf.com |
| 4 | AKA Hotel Resort \& Spa | http//www.akaresorts.com |
| 5 | All Nation | huahin.go.th |
| 6 | Amara Inn | http://www.amara-huahin.com/ |
| 7 | Anantara Hua Hin Resort \& Spa | http://huahin.anantara.com/default.aspx |
| 8 | Anantara Resort \& Spa Hua Hin | huahin.go.th |
| 9 | Anthony | huahin.go.th |
| 10 | Araya Residence | http://www.araya-residence.com |
| 11 | Asara Villa | http://www.asaravillaandsuite.com/ |
| 12 | Avenue Hua Hin | huahin.go.th |
| $\begin{array}{r} 13 \\ 14 \end{array}$ | Baan All Saran <br> Baan Anantasila | huahin.go.th http://www.anantasila.com/ |
| 15 | Baan Bayan Hotel | http://www.baanbayan.com/ |
| 16 | Baan Bonkai | huahin.go.th |
| 17 | Baan Boosarin | http://www.baanbusarin.com |
| 18 | Baan Chanchay | huahin.go.th |
| 19 | Baan Chattip | huahin.go.th |
| 20 | Baan Duang Kaew Resort | http://www.baanduangkaew.com/ |
| 21 | Baan Fahtai | huahin.go.th |
| 22 | Baan Fong Kluen | http://www.baanfongkluen.com/ |
| 23 | Baan Hua Hin Resort | http://www.baanhuahinresort.com/ |
| 24 | Baan Iammueang | http://www.baaniammuang.com |
| 25 | Baan Jankapor | http://baanjankapor.multiply.com |
| 26 | Baan Jed Peenong | huahin.go.th |
| 27 | Baan Jing | huahin.go.th |
| 28 | Baan Kachathong | http://www.kachathong.com |
| 29 | Baan Kangmung | http://www.baankangmung.com |

## ตารางที่ 34 (ต่อ)

| No. | Name | Website |
| :---: | :---: | :---: |
| 30 | Baan Keanghad | www.beachresort.hifi.com |
| 31 | Baan Khun Luang | www.baabkhunluang.multiply.com |
| 32 | Baan Manthana | www.manthanahouse.com |
| 33 | Baan Na Takiab | huahin.go.th |
| 34 | Baan Nanachat Huahin | huahin.go.th |
| 35 | Baan Napapan | http://www.thebeachfrontclub.com/photos/gallery/hotel/ba an-napapan-hua-hin/ |
| 36 | Baan Oum - O-R | huahin.go.th |
| 37 | Baan Pa Ploy | www.baanpaploy.com |
| 38 | Baan Pak Arrom | huahin.go.th |
| 39 | Baan Pak Chookamol | huahin.go.th |
| 40 | Baan Pak Christian | huahin.go.th |
| 41 | Baan PakHuahin CTAT | huahin.go.th |
| 42 | Baan Pak Marinee | huahin.go.th |
| 43 | Baan Pak Sopa | huahin.go.th |
| 44 | Baan Pak Vilai Boutique | huahin.go.th |
| 45 | Baan Paksenjohn | huahin.go.th |
| 46 | Baan Permchon | http://www.baanpermchon.com |
| 47 | Baan Phu Maihom | huahin.go.th |
| 48 | Baan Prapakarn | huahin.go.th |
| 49 | Baan Prasobchok | huahin.go.th |
| 50 |  <br> Restaurant | http://www.baanrajdamnern.com/ |
| 51 | Baan Rimhaad | huahin.go.th |
| 52 | Baan Sabaijai | http://www.baansabaijai.net |
| 53 | Baan Sansaran | huahin.go.th |
| 54 | Baan Sasun Holiday Home Rental | huahin.go.th |
| 55 | Baan Somboon | http://www.baansomboon.com/ |
| 56 | Baan Srasuan | huahin.go.th |

## ตารางที่ 34 (ต่อ)

| No. | Name | Website |
| :---: | :---: | :---: |
| 57 | Baan Sukma | huahin.go.th |
| 58 | Baan Suksiri | http://www.baansuksiri.igetweb.com |
| 59 | Baan Talay Dao Resort | huahin.go.th |
| 60 | Baan Talay Samran | http://www.talaysamran.com/ |
| 61 | Baan Talaychine Botique Resort | http://www.baan-taley-chine.com |
| 62 | Baan Toey | http://www.rentrightrealestate.com/ |
| 63 | Baan Thai Resort | http://www.huahin.go.th/ |
| 64 | Baan Thasanee | huahin.go.th |
| 65 | Baanpermchan | http://www.baanpermchan.com |
| 66 | Bann Piyanat | http://www.piyanut.com |
| 67 | Bellaya Resort | http://www.bellaya.net |
| 68 | Best L.D. | huahin.go.th |
| 69 | Bird Guesthouse | hualin.go.th |
| 70 | Boat House Resort | http://www.boathouseresort.com |
| 71 | Boat Lodge Resort | http://www.boatlodge-huahin.com |
| 72 | Captain Inn | http://ketteringham.com/ |
| 73 | Casa Del Mare | http://www.casadelmare.net |
| 74 | Cat Woman | huahin.go.th |
| 75 | Cha Ley Larn Hotel | http://www.chalelarn.com |
| 76 | Chaba Chaley | huahin.go.th |
| 77 | Chada Guesthouse | huahin.go.th |
| 78 | Chalelarn Hotel | http://www.chalelarn.com/ |
| 79 | Chan Pen | huahin.go.th |
| 80 | Chanpen | http://www.chanpenbeachguesthouse.com |
| 81 | Chatchai | huahin.go.th |
| 82 | Chiva Som International Health Resort | http://www.chivasom.com/ |
| 83 | Chom Tawan | http://www.chomtawan.net |
| 84 | Chomsin Hua Hin Resort | http://www.chomsinhuahin.com |
| 85 | Chomview Hotel | http://www.chomviewhotel.com/ |

## ตารางที่ 34 (ต่อ)

| No. | Name | Website |
| :---: | :---: | :---: |
| 86 | City Beach Resort | huahin.go.th |
| 87 | Cliffview (I Resort Cliffview) | huahin.go.th |
| 88 | Condo Chain | huahin.go.th |
| 89 | Coral Keys Bungalows | huahin.go.th |
| 90 | Crystal Villa | huahin.go.th |
| 91 | Dhewan Dara Resort \& Spa | http://www.dhewan-dara.com |
| 92 | Domrong Hotel | huahin.go.th |
| 93 | Doodi Guesthouse | http://www.doodiguesthouse.com/ |
| 94 | Dune Hua Hin Hotel | http://www.dunehuahin.com/ |
| 95 | E.U. Guest House | huahin.go.th |
| 96 | Ecosse Guesthouse | huahin.go.th |
| 97 | El Murphy's | huahin.go.th |
| $\begin{aligned} & 98 \\ & 99 \end{aligned}$ | Evergreen Boutique Hotel <br> Fresh Inn | http://www.evergreenchhuahin.com huahin.go.th |
| 100 | Fulay Guesthouse | http://www.fulay-huahin.com/ |
| 101 | Fulay Hotel | http://www.fulay-huahin.com/ |
| 102 | G. House | http://www.ghousehuahin.com/ |
| 103 | Golf Inn | huahin.go.th |
| 104 | Grand Pacific Sovereign Resort \& Spa | http://www.soveriegnresortandspa.com |
| 105 | Guesthouse | huahin.go.th |
| 106 | Haven Resort | http://www.haven-huahin.com |
| 107 | Head Rock Home | huahin.go.th |
| 108 | Highway Inn | huahin.go.th |
| 109 | Hill Ton Hua Hin Resort \& Spa | http://www1.hilton.com/ |
| 110 | Hin Nam Sai Suay | http://www.hinnamsaisuay.com |
| 111 | Hua Hin Bluewave | http://www.huahinbluewave.com/ |
| 112 | Hua Hin Condotel \& Resort Taweeporn | http://www.condotel-taweeporn.com |
| 113 | Hua Hin Hillside Resort | http://www.huahinhillsideresort.com/ |
| 114 | Hua Hin House | huahin.go.th |

## ตารางที่ 34 (ต่อ)

| No. | Name | Website |
| :---: | :---: | :---: |
| 115 | Hua Hin Mantha Resort | http://www.huahinmantraresort.com |
| 116 | Hua Hin Paradise Guesthouse | huahin.go.th |
| 117 | Hua Hin Place | http://www.huahinplace.com |
| 118 | Hua Hin Place | huahin.go.th |
| 119 | Hua Hin Resident | huahin.go.th |
| 120 | Hua Hin Sport Villa | huahin.go.th |
| 121 | Hua Hin Sweet | huahin.go.th |
| 122 | Hua Hin White Sand | http://www.white-sand.com/ |
| 123 | Hua Hin White Villa | huahin.go.th |
| 124 | Huahin Golf Villa | huahin.go.th |
| 125 | Huahin Grand Hotel And Plaza | http://www.huahingrand.co.th/ |
| 126 | Hyatt Regency Hua Hin | huahin.go.th |
| $\begin{aligned} & 127 \\ & 128 \end{aligned}$ | Imperial Hua Hin Beach Resort Intercontinental Hua Hin Resort | http://www.imperialhuahin.com <br> http://www.intercontinental.com/huahin |
| 129 | Iyara Hua Hin Lodge | http://www.iyarahuahin.com |
| 130 | Jailhouse | http://www.kuetthailand.jubii.com |
| 131 | Jedpeenong Hotel | huahin.go.th |
| 132 | Jing's Guesthouse | http://www.jings.in.th |
| 133 | Jjinning Beach Guesthouse | http://www.jinningbeachguesthouse.com/ |
| 134 | Joy's Guesthouse | http://www.peternelson.com |
| 135 | K.Place Guesthouse \& Thai massage | www.kplace-huahin.com |
| 136 | Kaban Tamor Resort | huahin.go.th |
| 137 | Kae Khao | huahin.go.th |
| 138 | Kao Tao Villa Beach Resort | huahin.go.th |
| 139 | Karoon Hut | huahin.go.th |
| 140 | Kek's | huahin.go.th |
| 141 | Kho Tao | huahin.go.th |
| 142 | Kings Home | huahin.go.th |
| 143 | Kockeral Mews | huahin.go.th |

## ตารางที่ 34 (ต่อ)

| No. | Name | Website |
| :---: | :---: | :---: |
| 144 | Korsor Resort | huahin.go.th |
| 145 | La Perla Place | huahin.go.th |
| 146 | Laksasubha | http://www.baanlaksasubha.com |
| 147 | Leelawadee | huahin.go.th |
| 148 | Leng Guesthouse | http://www.lenghotel.com |
| 149 | Let's Sea Resort | http://www.letussea.com/ |
| 150 | Long Beach Inn | huahin.go.th |
| 151 | Luna Hut | huahin.go.th |
| 152 | M \& D | huahin.go.th |
| 153 | Majestic Beach Resort | huahin.go.th |
| 154 | Markwin Lodge | huahin.go.th |
| 155 | Marriott Resort \& Spa, Mariott Hua Hin | http://marriott.com/property/propertypage/HHQMC |
| 156 157 | Memory Guesthouse <br> Milford | huahin.go.th <br> huahin.go.th |
| 158 | Minitel | http://www.minitelhotel.com/minitel/ |
| 159 | Mod Guesthouse | huahin.go.th |
| 160 | Mr. Dan | huahin.go.th |
| 161 | My way | http:// http//www.mywayhuahin.com |
| 162 | Napalai House \& Spa | huahin.go.th |
| 163 | Napalai Resort \& Spa | http://www.napalaihuahin.com |
| 164 | Narawan Hotel | huahin.go.th |
| 165 | Navy Phirom 1 | http://www.navyphirom.com/huahin/ |
| 166 | Nern Chaley | huahin.go.th |
| 167 | New Beach | huahin.go.th |
| 168 | Nicha Suite | huahin.go.th |
| 169 | Nilawan (1) | http://www.baannilawan.com |
| 170 | Nilawan (2) | huahin.go.th |
| 171 | Nina House | huahin.go.th |
| 172 | O.K. Guesthouse | huahin.go.th |

## ตารางที่ 34 (ต่อ)

| No. | Name | Website |
| :---: | :---: | :---: |
| 173 | Ocean Breeze Boutique Garden Suites | huahin.go.th |
| 174 | Orasa | huahin.go.th |
| 175 | P.P. Villa | huahin.go.th |
| 176 | Pananchai | huahin.go.th |
| 177 | Pananchai Village | huahin.go.th |
| 178 | Patchara House | huahin.go.th |
| 179 | Pattana Geusthouse | www.huahinpattana.com |
| 180 | Pavilion Beach (Hua Hin) | huahin.go.th |
| 181 | Pearl@Hua Hin | huahin.go.th |
| 182 | Peony | http://www.peonyhuahinhotel.com/ |
| 183 | Phatsaporn Apartment | huahin.go.th |
| 184 | Phueng Guesthouse | http://www.phuengguesthouse.com |
| 186 | Prinz Garden Villa Service Apartment Putahracsa | huahin.go.th <br> http://www.putahracsa.com |
| 187 | Rabiang Dao | huahin.go.th |
| 188 | Rachen Hut | huahin.go.th |
| 189 | Rahmaya | huahin.go.th |
| 190 | Raivada | huahin.go.th |
| 191 | Rajana Garden | huahin.go.th |
| 192 | Reera Resort | http://www.reerahuahin.com/room.html |
| 193 | Rest Detail | huahin.go.th |
| 194 | Royal Asia Lodge | http://www.royalasiahuahin.com/ |
| 195 | Royal Beach | huahin.go.th |
| 196 | Ruen Kanok | huahin.go.th |
| 197 | Rung Thip | huahin.go.th |
| 198 | Sabaijai Hua Hin Resort | huahin.go.th |
| 199 | Sabaya Junkle resort | huahin.go.th |
| 200 | Sailom Hotel | http://www.sailomhotelhuahin.com/ |
| 201 | Saint John Villa | huahin.go.th |

## ตารางที่ 34 (ต่อ)

| No. | Name | Website |
| :---: | :---: | :---: |
| 202 | Sakulwilai | huahin.go.th |
| 203 | Salathai | huahin.go.th |
| 204 | Samor Spa Village Hua Hin | http://www.smorspahuahin.com/ |
| 205 | Sand Inn Hotel | huahin.go.th |
| 206 | Saran Rom | huahin.go.th |
| 207 | Sawasdee Guesthouse | huahin.go.th |
| 208 | Seahorse Resort | http://www.seahorse-resort.com/ |
| 209 | Seaway Inn | huahin.go.th |
| 210 | Sheraton | huahin.go.th |
| 211 | Sirima Guesthouse | huahin.go.th |
| 212 | Sirin Hotel | huahin.go.th |
| 213 | Siriphetkasem Hotel | huahin.go.th |
| 1214 | Sofite Central Hua Hin Resorts | http:/WWW.centralhotelsesorts.com |
| 215 | Somwaan | huahin.go.th |
| 216 | Suanson Pradiphat | huahin.go.th |
| 217 | Subhamitra Hotel | huahin.go.th |
| 218 | Suda Resort | www.sudaresort.com/en/night-vision |
| 219 | Sukasem Stayhome | http://www.farangfriendly.com/ |
| 220 | Suksabai Hotel | http://www.farangfriendly.com/ |
| 221 | Sukwilia Guest house | huahin.go.th |
| 222 | Sun Dance | http://www.sundancehuahin.com/ |
| 223 | Sunny Clown | http://www.tripadvisor.com/ |
| 224 | Sunshine | huahin.go.th |
| 225 | Supatra Huahin Resort | huahin.go.th |
| 226 | Takaib Beach Resort | http://www.takiabbeach.com/ |
| 227 | Tananchai | huahin.go.th |
| 228 | Tanawit Condotel | http://www.tanawit.com/ |
| 229 | Tao Lorm | huahin.go.th |
| 230 | Thai Orchid Guesthouse | huahin.go.th |

```
ตารางที่ 34 (ต่อ)
```

| No. | Name | Website |
| :---: | :---: | :---: |
| 231 | Thanasab | huahin.go.th |
| 232 | The Baihai Hua Hin | huahin.go.th |
| 233 | The Fat Cat Guesthouse | www.thefatcathuahin.com |
| 234 | The Hen Hua Hin | huahin.go.th |
| 235 | The Herbs | huahin.go.th |
| 236 | The Hideaway Hua Hin Resort | huahin.go.th |
| 237 | The Lapa HuaHin | huahin.go.th |
| 238 | The Rock Beach Resort and Spa | http://www.therockhuahin.com/ |
| 239 | The Rock Hua Hin Beach Resort | huahin.go.th |
| 240 | The Sea-Cret Hua Hin | huahin.go.th |
| 241 | The Seaside | huahin.go.th |
| 242 | The Shed | huahin.go.th |
| 243 | Thipurai Beach Resort $\square$ U | http://www.thipurai.com/new/index.php |
| 244 | Thipurai City Hotel | http://www.thipuraicityhotel.com/ |
| 245 | Tong Mee Guesthouse | huahin.go.th |
| 246 | Top Mark's | http://www.topmarkshotelhuahin.com/ |
| 247 | Veranda Lodge | http://www.verandalodge.com/ |
| 248 | Versailles Mini Hotel | huahin.go.th |
| 249 | Viranda Resort | huahin.go.th |
| 250 | V-Villa Hua Hin | huahin.go.th |
| 251 | Wannara Hua Hin | www.wannarahotel.com |
| 252 | Wora Bura Resort \& Spa | http://www.worabura.com/ |
| 253 | Worawee Garden | huahin.go.th |
| 254 | Yai Ya Boutique Resort | http://www.yaiyaresort.com |
| 255 | Youth Hostel \& Euro Huahin City Hotel | huahin.go.th |

## ภาษาเชิงความหมาย

ภาคผนวก ง กล่าวถึงภาษาเิิงความหมาย และการอธิบายภาพกฎทั้งหมดของ OWL ที่ ใช้ในวิทยานิพนธ์ฉบับนี้

เนื่องจากการอธิบายข้อมูลเชิงความหมายจะต้องใช้ภาษาที่มีความสามารถในการ พรรณนา (Description Language) เช่นภาษา RDF, RDF Schema, DAML+OIL และภาษา OWL

ภาษา RDF เกิดข้อจำกัดในการอธิบายข้อมูลเนื่องจากไม่สามารถอธิบายเงื่อนไขหรือ ความหมายของข้อมูลได้โดยละะอียด ขาดการจัดการความสัมพันธ์ระหว่างคุณสมบัติกับรีซอร์ส ดังนั้นองค์กร W 3 C จึงได้นำาสนอภาษา RDF Schema ซึ่งมีความสามารถในการอธิบาขข้อมูลออน โทโลยีอย่างง่าย เช่น การอธิบายข้อมูลซึ่งกำหนดความสัมพันธ์ในลักบณะสับคลาส มีรูปแบบการ จัดการความรู้ที่ใกล้เคียงกับรูปแบบเฟรม (frame-based approach) โดย RDFS ถูกสร้างขึ้นเพื่อ กำหนดโดเมนเฉพาะแก่คุณสมบัติและคลาสของรีซซร์ส ดังนั้นโครงสร้างพื้นฐานของ RDFS คือ class, property และ ConstraintProperty ต่อมาองค์กร W3C ได้นำเสนอภาษา OWL (Web Ontology Language) เป็นภาษาที่ปรับปรุงขึ้นมาใหม่จากภาษา DAML+OIL มีจุดมุ่งหมายเพื่อใช้กับ สารสนเทศในรูปเอกสารที่ต้องใช้แอพพลิเคชันประมวลผล ซึ่งมีสภาวการณ์ใช้งานที่แตกต่างจาก
 ของศัพท์และความสัมพันธ์ระหว่างเทอมที่เรียกว่า ออนโทโโลยี ซึ่งมีชื่อเรียกส่วนประกอบดัง กล่าวคือ คลาส คุณสมบัติ และอินสแตนซ์ซำหรับอินสแตนซ์นั้นมักรู้จักกัน ในชื่อ อินสแตนซ์ ดังนั้นเมื่อกล่าวถึงอินสแตนซ์จึงหมายถึง อินสแตนซ์ของคลาส

ภาษา OWLเหมาะสมและมีความสามารถในการอธิบายข้อมูลเชิงความหมายครอบคลุม ความสามารถของภาษา RDF และ RDFS โดยภาษา OWL เหนือกว่าภาษาเหล่านี้ตรงที่เครื่อง สามารณแปลความหมายคอนเท้นต์เว็บและมีความสามารถในการกำหนดเงื่อนไขที่มีความซับช้อน มากขึ้นได้ โดยได้เพิ่มคำศัพท์สำหรับอธิบายคุณสมบัติ คลาสและความสัมพันธ์ระหว่างคลาส เช่น การดิสจอยน์, ตัวบ่งปริมาณ (cardinality) เช่น "exactly one", การสมมูลและไม่สมมูล ((In)equality), ชนิดของคุณสมบัติที่เพิ่มขึ้น ลักษณะของคุณสมบัติ (เช่น symmetry) และ การแจก แจงอินสแตนซ์ของคลาส (enumerated classes) ในปัจจุบันภาษา OWL ได้กลายเป็นภาษามาตรฐาน ในการอธิบายออนโทโลยีที่ได้รับความนิยมอย่างมาก ซึ่ง W 3 C แบ่งภาษา OWL เป็น 3 กลุ่มคือ

กลุ่ม OWL Lite เหมาะสำหรับการเก็บข้อมูลความสัมพันธ์แบบ hierarchy และมี ข้อกำหนดอย่างง่าย เช่น ข้อกำหนดแบบ cardinality จะอนุญาตให้มีค่าได้เป็น 0 หรือ 1 เหมาะ สำหรับการเก็บข้อมูลอรรถถภิธานและอนุกรมวิธาน

กลุ่ม OWL DL (Description Logic)เป็นภาษาที่รองรับคำสั่งทุกคำสั่งของภาษา OWL แต่จะต้องเขียนภายใต้ข้อกำหนด เช่น คลาสสามารถเป็นสับคลาสของคลาสอื่นได้มากกว่า 1 คลาส

แต่คลาสไม่สามารถเป็นอินสแตนซ์ของคลาสอื่นได้
กลุ่ม OWL Full เป็นภาษาที่มีความซับซ้อนมากที่สุด โดยมีลักษณะพิเศษ เช่น ใช้ ไวยากรณ์จาก RDF ได้ คลาสสามารถเป็นอินสแตนซ์ได้ เนื่องจาก owl:Thing สมมูลกับ rdfs:Resource ทำให้ object property กับ datatype property ไม่ดิสจอยน์กัน ส่วนแท็ก owl:Class สมมูลกับ rdfs:Class และ owl:ObjectProperty สมมูลกับ rdf:Property แต่ซอท์ฟแวร์ reasoning จะ ไม่รองรับทุกคุณลักษณะของการเก็บข้อมูลแบบ OWL Full

เทอมของ OWL ที่ใช้ในการสร้างภาษา OWL Lite *, OWL DL และ OWL Full สรุปได้ ดังตารางที่ 20 โดยหัวข้อที่พิมพ์ตัวหนามีเครื่องหมายดอกจัน $(*)$ นั้นเป็นคำสั่งของระดับ OWL Lite ซึ่งสามารถใช้ในระดับ OWL DL และ OWL Full ได้ ส่วนคำสั่งกลุ่ม Arbitrary Cardinality กลุ่ม Filler Information และกลุ่ม Boolean Combinations of Class Expressions นั้นใช้ตั้งแต่ระดับ OWL DL และ OWL Full

ตารางที่ 35 สรุปคำสั่งของ OWL Lite *, OWL DL และ OWL Full

| RDF Schema Features* | (In)Equality* | Property Characteristics* |
| :---: | :---: | :---: |
| Class (Thing, Nothing) <br> rdfs:subClassOf <br> rdf:Property <br> rdfs:subPropertyOf <br> rdfs:domain <br> rdfs:range <br> Individual | equivalentClass equivalentProperty <br> sameAs <br> differentFrom <br> AllDifferent distinctMembers | Object Property <br> DatatypeProperty <br> inverseOf <br> TransitiveProperty <br> SymmetricProperty <br> FunctionalProperty <br> InverseFunctionalProperty |
| Property Restrictions* | Restricted Cardinality* | Arbitrary Cardinality: |
| Restriction <br> onProperty <br> allValuesFrom <br> someValuesFrom | minCardinality (only 0 or 1 ) <br> maxCardinality (only 0 or 1) <br> cardinality (only 0 or 1 ) | minCardinality maxCardinality cardinality |
| Class Intersection* | Versioning* | Annotation Properties* |
| intersectionOf | versionInfo <br> priorVersion <br> backwardCompatibleWith | rdfs:label <br> rdfs:comment rdfs:seeAlso |
| Header Information* |  |  |
| Ontology imports | DeprecatedClass <br> DeprecatedProperty | AnnotationProperty OntologyProperty |

ตารางที่ 35 (ต่อ)

| Datatypes* | Filler Information | Boolean Combinations of <br> Class Expressions |
| :--- | :--- | :--- |
| xsd datatypes | one of <br> dataRange <br> disjointWith <br> equivalentClass <br> (applied to class expressions) <br> rdfs:subClassOf <br> (applied to class expressions) | unionOf <br> complementOf <br> intersectionOf |
| Filler Information |  |  |
| hasValue |  |  |

ไวยากรณ์ของภาษา OWL มีสัจพจน์ที่สัมพันธ์กับสัจพจน์ของ DL และความหมายดัง รายละเอียดในตารางที่ 21 ถึงตารางที่ 24 โดยแบ่งกลุ่มตามคลาส คุณสมบัติ อินสแตนซ์ และ ข้อจำกัดของคุณสมบัติตามระดับภาษา OWL ได้ดังต่อไปนี้

ตารงที่ 36 ไวยากรณ์OWDที่เกี่ยกับคลาส

| สัจพจน์ของ OWL | สัจพจน์ของ DL | ความหมาย | Lite | DL/Full |
| :--- | :--- | :--- | :---: | :---: |
| owl:Thing | T | คลาสทั้งหมด | $\checkmark$ | $\checkmark$ |
| owl:Nothing | $\perp$ | คลาสว่าง | $\checkmark$ | $\checkmark$ |
| owl:Class | คอนเซปต์ $C$ | แสดงประเภทหรือคอนเซปต์ | $\checkmark$ | $\checkmark$ |
| owl:Restriction | ตารางที่ 24 | กำหนดคลาสร่วมกับความ สัมพันธ์ <br> ใดๆ จนเป็นข้อจำกัด | $\checkmark$ | $\checkmark$ |
| ow:subClassOf | Б | กำหนดสับคลาส | $\checkmark$ | $\checkmark$ |
| owl:equivalentClass | $\equiv$ | กำหนดสองคลาสให้สมมูลกันมีอิน <br> สแตนซ์กลุ่มเดียวกัน | $\checkmark$ | $\checkmark$ |
| owl:disjointWith | $A$ П $B \equiv \perp$ | คลาสสองคลาสที่มีอินสแตนซ์ต่างกัน | $\mathbf{x}$ | $\checkmark$ |
| owl:one of | $\left\{e_{,} e_{2}, \ldots\right\}$ | กำหนดอินสแตนซ์รายตัวของคลาส | $\mathbf{x}$ | $\checkmark$ |
| owl:intersectionOf | $\square$ | เชื่อมคลาสสองคลาสที่มีอินสแตนซ์ <br> บางส่วนร่วมกัน | $\checkmark$ | $\checkmark$ |
| owl:unionOf | $\sqcup$ | เชื่อมคลาสสองคลาสที่มีอินสแตนซ์ <br> รวมกัน | $\mathbf{x}$ | $\checkmark$ |
| owl:complementOf | $\neg C$ | เพื่อบอกว่าสับคลาสหรืออินสแตนซ์ <br> ไม่ใช่สมาชิกของคลาสนั้น | $\mathbf{x}$ | $\checkmark$ |

ตารางที่ 37 ไวยากรณ์ OWL ที่เกี่ยวกับอินสแตนซ์

| สัจพจน์ของ OWL | สัจพจน์ของ DL | ความหมาย | Lite | DL／Full |
| :---: | :---: | :---: | :---: | :---: |
| 〈Classname〉 |  | กำหนดว่า Individual เป็นอินสแตนซ์ ของคลาสใด โดยใช้ร่วมกับ rdf： <br> Description และ rdf：type | $\checkmark$ | $\checkmark$ |
| 〈Propertyname〉 | $P(a, b)$ | สร้างประโยคสำหรับคุณสมบัติ Pro－ pertyname | $\checkmark$ | $\checkmark$ |
| rdf：Description | Individual a | ตั้งชื่ออินสแตนซ์ | $\checkmark$ | $\checkmark$ |
| rdf：type | C（a） | กำหนดให้Individual เป็นอินสแตนซ์ ของคลาส | $\checkmark$ | $\checkmark$ |
| owl：sameAs | $=$ | ใช้เชื่อมสองอินสแตนซ์ ว่าทั้งสอง หมายถึงสิ่งเดียวกัน | $\checkmark$ | $\checkmark$ |
| ow：differentFrom | $\neq$ | ใช้เชื่อมสองอินสแตนซ์ว่าทั้งสอง หมายถึงสิ่งที่ต่างกัน | $\checkmark$ | $\checkmark$ |
|  |  | －ต้องใช้กับ owl：distinctMembers -1 ป็นรูปแบบ ย่อชอง owl：differ－ entFrom เพื่อใช้ประกาศ่ว่าอิลิเมนต์ ทั้งหมดที่อยู่ใน owl：distinctMembers นั้น ดิสจอยน์กันโดยสมบูรณ์ |  |  |

ตารางที่ 38 ไวยากรณ์ OWL ที่เกี่ยวกับคุณสมบัติ

| สัจพจน์ของ OWL | สัจพจน์ <br> －DL | ความหมาย | Lite | DL／Full |
| :--- | :--- | :--- | :---: | :---: |
| owl：ObjectProperty | roles $R$ | กำหนดคุณสมบัติเป็นความสัมพันธ์เชื่อม <br> ระหว่างอินสแตนซ์ | $\checkmark$ | $\checkmark$ |
| owl：DatatypeProperty |  | กำหนดคุณสมบัต็เป็นความสัมพันธ์เชื่อม <br> ระหว่างอินสแตนซ์และค่าของข้อมูล | $\checkmark$ | $\checkmark$ |
| owl：AnnotationProperty <br> owl：OntologyProperty | N．A． | กำหนดรายละเอียดของรีซอร์สหรืออนโทโล <br> ยี | $\checkmark$ | $\checkmark$ |
| rdfs：subPropertyOf | Б | ใช้เชื่อมระหว่าง 2 คุณสมบัติเพื่อกำหนด <br> ลำดับชั้นของคุณสมบัติ | $\checkmark$ | $\checkmark$ |
| owl：inverseOf | $R$ | เชื่อม 2 ความสัมพันธ์ โดยถ้า P เป็นอินเวอร์ <br> สของ Q และมีประโยค O WL เป็น $P(a, b)$ <br> แล้ว Q คือประโยค $Q(b, a)$ | $\checkmark$ | $\checkmark$ |

ตารางที่ 38 (ต่อ)


ตารางที่ 39 เทอมที่ใช้ใน OWL Restriction กับความสัมพันธ์

| OWL Restriction | สัจพจน์- DL | ความหมาย | Lite | DL/Full |  |
| :--- | :--- | :--- | :---: | :---: | :---: |
| hasValue | $R: a$ | ใช้ระบุค่าอินสแตนซ์ <br> ของคลาส | $\checkmark$ | $\checkmark$ |  |
| Property Restriction |  |  |  |  |  |
| allValuesFrom | $\forall R . C$ | ทั้งหมดของคลาส | $\checkmark$ | $\checkmark$ |  |
| someValuesFrom | $\exists R . C$ | บางคลาส | $\checkmark$ | $\checkmark$ |  |
| Restricted Cardinality : ตัวบ่งปริมาณ |  |  |  |  |  |
| minCardinality | $\geq n R$ | ระบุค่าน้อยสุด | $\{0,1\}$ | $\checkmark$ |  |
| maxCardinality | $\leq n R$ | ระบุค่ามากสุด | $\{0,1\}$ | $\checkmark$ |  |
| Cardinality | $\geq n R \sqcap \leq n R$ | อยู่ระหว่างค่าน้อยที่ <br> สุดและมากที่สุด | $\{0,1\}$ | $\checkmark$ |  |

โครงสร้างของออนโทโลยีที่ใช้ภาษา OWL สร้างนั้นประกอบด้วย 3 ส่วน คือ ส่วน เนมสเปซ ส่วนหัว และส่วนของการรวมข้อมูลด้วยอิลิเมนท์ต่างๆ ดังมีรายละเอียดต่อไปนี้

## 1. ส่วนเนมสเปซ

เมื่อเริ่มสร้างไฟล์ออนโทโลยีด้วยภาษา OWL จะมีเนมสเปซที่สำคัญดังตัวอย่างโค้ดของ ภาษา OWL พร้อมคำอธิบาย ซึ่งสามารถเพิ่มได้ตามต้องการในการใช้งาน
$<$ ?xml version=" 1.0 "? $>$
<rdf:RDF
บรรทัด 1. xmlns="http://www.owl-ontologies.com/HHOntoTourism1 1.owl\#"
บรรทัด 2. xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns\#"
บรรทัด 3. xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema\#"
บรรทัด 4. xmlns:owl="http://www.w3.org/2002/07/owl\#"
บรรทัด 5. xml:base="http://www.owl-ontologies.com/HHOntoTourism11.owl">
บรรทัด 6. <owl:Ontology rdf:about=""><! -- ส่วนหัว --!></owl:Ontology>
บรรทัด 7. <! -- ส่วนอิลิเมนท์ของข้อมูลที่ใช้ในออนโทโลยี --!>
R/rdf:RDF
บรรทัดที่ 1 กำหนด Default Namespace ใหักับเอกสารปจจุบันสาหรับใช้ในการอ้างอิง รีซอร์สต่าง ๆ ในเอกสารปัจจุบัน บรรทัดที่ 2 ระบุ Namespace อ้างอิงไปยัง RDF Vocabulary ซึ่ง บรรจุข้อมูลโครงร่างภาษา RDF บรรทัดที่ 3 ระบุ Namespace อ้างอิงไปยัง RDF Schema ซึ่งเป็น ข้อมูลเค้าร่างที่เป็นส่วนขยายของภาษา RDF บรรทัดที่ 4 กำหนด Namespace อ้างอิงไปยังข้อมูลเค้า ร่างของภาษา OWL บรรทัดที่ 5 กำหนดชื่อของเอกสารที่จะถูกจัดเก็บในระบบ ในที่นี้คือจะมีชื่อ ไฟล์ว่า HHOntoTourism 11.owl

การเขียนเนมสเปซนี้ผู้ใช้อาจเขียนเนมสเปซ โดยประกาศ DOCTYPE แบบ XML ได้

## 2. ส่วนหัวของออนโทโลยี

จากโค้ดตัวอย่างคือส่วนของแท็กในบรรทัดที่ 6 ซึ่งความจริงอาจมีมากกว่า 1 บรรทัด โดยต้องประกาศส่วนหัวของออนโทโลยีด้วยแท็ก [owl:Ontology](owl:Ontology) จนกระทั่งจบส่วนหัว ปิดด้วย แท็ก </owl:Ontology> ซึ่งในส่วนนี้มีแท็กที่สำคัญ 2 กลุ่มให้เลือกใช้ตามความจำเป็นหรือตามที่ ต้องการได้ดังนี้
2.1 กลุ่ม Versioning* ซึ่งเป็นคำสั่งระดับ OWL Lite ประกอบด้วย
2.1.1 owl:versionInfo เป็นอินสของ owl:AnnotationPropertyใช้อธิบาย รายละเอียดของเวอร์ชัน
2.1.2 owl:priorVersion เป็นอินสแตนซ์ของ owl:OntologyProperty ใช้บรรยายถึง ออนโทโลยีอื่น โดยเฉพาะที่มีมาก่อนเวอร์ชันนี้เหมาะกับองค์กรที่ใช้การกำหนดซอฟต์แวร์แบบ เวอร์ชัน
2.1.3 owl:backwardCompatibleWith เป็นอินสแตนซ์ของ owl:OntologyProperty เช่นกัน นิยมใช้บอกว่าออนโทโลยีในเวอร์ชันใดๆ ใช้ได้เข้ากับเวอร์ชันใดก่อนหน้า
2.1.4 owl:incompatibleWith เป็นอินสแตนซ์ของ owl:OntologyProperty นิยมใช้ อธิบายว่าออนโทโลยีที่กล่าวถึงไม่เหมาะสมกับออนโทโลยีรุ่นใหม่รุ่นใด
2.1.5 owl:DeprecatedClass เป็นสับคลาสของ rdfs:class และ owl:DeprecatedProperty เป็นสับคลาสของ rdf:Property การประกาศว่าคลาสหรือคุณสมบัติใดเป็น Deprecated term นั้นหมายถึงเทอมนั้นเป็นศัพท์เก่าที่จะไม่ใช้ในออนโทโลยีเวอร์ชันใหม่ แต่จะ สัมพันธ์กับศัพท์ในเวอร์ชันใหม่ได้อย่างไร จึงมักใช้คู่กับ owl:backwardCompatibleWith
2.2 กลุ่ม Annotation Properties* ซึ่งเป็นคำสั่งระดับ OWL Lite ซึ่งใน OWL Full มัก ไม่ใส่ข้อบังคับใดๆในส่วน Annotaion แต่ OWL DL ยอมให้ใส่คำบรรยายเหล่านี้ในคลาส คุณสมบัติ อินสแตนซ์และส่วนหัวของออนโทโลยีได้ ภายใต้เงื่อนไขคือ
 จอยน์กันทั้งหมด
2.2.2 มักประกาศใช้ในรูปแบบทริพเพิล AnnotationPropertyID rdf:type owl:AnnotationProperty
2.2.3 Annotaion Property ไม่เป็นไปตามสัจพจน์คือไม่มีคุณสมบัติย่อย โดเมน หรือเรนจ์ใน Annotation Property เลย
2.2.4 กรรมของ Annotaion property ต้องเป็นทั้งข้อมูลตัวหนังสือ อ้างอิง URI หรืออินสแตนซ์

ดังนั้น Annotaion property ที่ใช้ใน OWL ประกอบด้วยแท็กrdfs:label แท็ก rdfs:comment แท็ก rdfs:seeAlso และ แท็ก rdfs:isDefinedBy
2.2.5 OntologyProperty เป็น OWL Built-in class ที่ประกอบด้วยอินสแตนซ์ที่ เป็นศัพท์ของ OWL คือ owl:imports และโครงสร้าง ontology-versioning ที่มีแท็ก owl:priorVersion แท็ก owl:backwardCompatibleWith และ owl:incompatibleWith ล้วนต้องมีโดเมน และเรนจ์เป็น owl:Ontology สำหรับ OWL DL ในการใช้ owl:OntologyProperty มีข้อบังคับ เช่นเดียวกับ owl:AnnotationProperty

## 3. ส่วนอิลิเมนต์ที่ใช้ในออนโทโลยี

จากบรรทัดที่ 7 ของโค้ดตัวอย่างนั้นหมายถึงอิลิเมนต์ของ OWL คือการอธิบายข้อมูล เชิงความหมายของ OWL ซึ่งอิลิเมนต์หลักประกอบด้วยการกำหนดคลาส คุณสมบัติ การนำ คุณสมบัติมาใช้เป็นความสัมพันธ์ระหว่างรีซอร์ส การกำหนดเงื่อนไขสำหรับการอธิบายข้อมูล ให้กับคอนเซ็ปต์หรือคุณสมบัติและการอธิบายข้อมูลอินสแตนส์ ผู้วัออจึึงขนำเสนออิลิเมนต์ที่ใช้ ในวิทยานิพนธ์เเ็นตัวอย่างประกอบกับการใช้คำสั่งของ OWL DL ดังนี้
3.1 การกำหนดคลาสด้วย owl:Class
3.1.1 การกำหนดคลาสด้วยแท็ก owl:Class ใช้ในการอธิบายคอนเซ็ปต์หรือสิ่ง ต่าง ๆ (Thing) ในออนโทโลยี จะมีแท็กคลาส คือ owl:Class ดังตัวอย่าง

$$
\begin{aligned}
& \text { <! - การกำหนดคลาสชื่อว่า Accommodation --!> } \\
& \text { <owl:Class rdf:ID=" Accommodation "/> }
\end{aligned}
$$

### 3.1.2 กำหนดสับคลาสด้วย rdfs:subClassOf

การกำหนดแท็กสับคลาสเป็นการกำหนดคลาสใหม่ ซึ่งเกิดการถ่าย ทอด คุณสมบัติจากคลาสได้ ตัวอย่างของการเขียนโปรแกรมดังโค้ด กำหนดให้ Category-Hotel เป็นสับ คลงสของคลาส Accommodation

$$
\begin{aligned}
& \text { <rdfs:subClassOf rdf:resource="\#Accommodation"/> } \\
& \text { </owl:Class> } \\
& \text { ความสัมพันธ์แบบสับคลาสทำให้เกิดคอนเซ็ปต์ทั่วไป (Generic concept) }
\end{aligned}
$$ และคอนเซ็ปต์เฉพาะ (Specific concept) กล่าวคือ Accommodation คือคอนเซ็ปต์ที่แสดง ความหมายของที่พักแรมทั่วไป ในขณะที่ Category-Hotel คือคอนเซ็ปต์ที่แสดงความหมายที่ เจาะจงว่าเป็นที่พักแรมประเภท โรงแรม จากความสัมพันธ์นี้กล่าวได้ว่า Category-Hotel คือสับเซต ของ Accommodation



ภาพที่ 114 ความสัมพันธ์ของซุปเปอร์คลาส คลาสและสับคลาส

เนื่องจากคลาสและสับคลาสมีความสัมพันธ์แบบเป็นชั้นดังนั้นจากการกำหนด คลาส Category-Hotel เป็นสับคลาสของคลาส Accommodation อาจกล่าวได้ว่า คลาส Accommodation เป็นซุปเปอร์คลาสของ Category-Hotel นั่นคืออินสแตนซ์โรงแรมต่างๆ ที่เป็น สมาชิกของ Category-Hotel นั้นย่อมเป็นอินสแตนซ์โดยอ้อม (Indirect) แก่คลาส Accommodation ด้วยดังภาพที่ 114 อินสแตนซ์ของคลาสย่อมเป็นอินสแตนซ์ของซุปเปอร์คลาสไปด้วย

## 3.2 การกำหนดคุณสมบัติ

การกำหนดคุณสมบัติในภาษา OWL แบ่งเป็น 2 ประเภท ได้แก่ owl:DatatypeProperty และ owl:ObjectProperty
3.2.1การสร้าง Datatype Properties เป็นการกำหนดคุณสมบัติ้วยแท็ก owl:DatatypeProperty ใช้เพื่อกำหนดคุณสมบัติหรือความสัมพันธ์ระหว่างคลาส โดเมนและเรนจ์ที่ เป็นค่า Literal หรือชนิดข้อมูลตาม XML Schema แล้วนำไปใช้ในการอธิบายข้อมูล อินสแตนซ์แต่ ละตัว เช่น การอธิบายข้อมูลราคาของที่พักแรมแต่ละประเภทดังรูปแบบโค้ดด้านล่าง

> <owl:DatatypeProperty rdf:ID="hasPrice"> $\quad$ <rdfs:range rdf:resource= "http://www.w3.org/2001/XML ไม่ระบุโดเมนนั่นคือมีโดเมนเป็นคลาส Thing นั่นเอง ส่วน range กำหนดด้วยแท็ก rdfs:range เป็น ค่าคงที่ที่สอดคล้องตาม XML Schema มีประเภทของข้อมูลเป็น float
3.2.2 การสร้าง Object Property ด้วยแท็ก owl:ObjectProperty ใช้เพื่ออธิบาย ข้อมูลคุณสมบัติของคอนเซ็ปต์ซึ่งเป็นรีซอร์ส (Resource) หรือกำหนดความสัมพันธ์ระหว่าง 2 คอน เซ็ปต์ เช่น การอธิบายข้อมูลที่ตั้งของที่พักแรมซึ่งมีรายละเอียดเชื่อมโยงไปยังชื่อที่พักแรม
[owl:Restriction](owl:Restriction)
[owl:onProperty](owl:onProperty) <owl:ObjectProperty rdf:ID="hasCategory"/>
</owl:onProperty>
</owl:Restriction>
จากรูปแบบโค้ดมี owl:Restriction ใช้เมื่อต้องการตั้งค่า Restriction และ owl:onProperty ใช้เมื่ออ้างถึงคุณสมบัติที่นำมาสร้าง Restriction

## 3.3 กำหนดความสัมพันธ์ระหว่างรีซอร์ส <br> รีซอร์ส (Resource) หมายถึง คลาสที่มีการอ้างอิงได้ด้วยการกำหนด URI ซึ่งการ

 กำหนดความสัมพันธ์ระหว่างรีซอร์สเป็นการกำหนดเงื่อนไขของโดเมนและเรนจ์ให้กับการอธิบายคุณสมบัตี่เชื่อมโยงระหว่างรีซอร์ส เช่น การอธิบายข้อมูลราคาด้วยคุณสมบัติ hasPrice ซึ่งสามารถ กำหนดโดเมนคือ "Room" และ เรนจ์คือค่าคงที่ซึ่งเป็น float <owl:DatatypeProperty rdf:ID="hasPrice">
<rdfs:domain rdf:resource="\#Room"/>
<rdfs:range
rdf:resource="http://www.w3.org/2001/ XMLSchema\#float"/>
</owl:DatatypeProperty>
การกำหนดความสัมพันธ์ระหว่างรีซอร์สจะถูกถ่ายทอดเพื่อนำไปใช้ในการ
อธิบายข้อมูลเชิงความหมายในออนโทโลยีระดับล่างต่อไป โดยไม่จำเป็นที่จะต้องทำการกำหนด คุณสมบัติ้นมนาอีก อย่างไรก็ตามในการสืบทอด การอธิบายข้อมูลในออนโทโลยีระดับล่างสามารถ ที่จะทำการกำหนดคอนเซ็ปต์และเงื่อนไขขึ้นใหม่ได้เมื่อต้องการอธิบายข้อมูลที่มีความ เฉพาะเจาะจงมากในระดับล่างลงไป
3.4 การกำหนดเงื่อนไขสำหรับการอธิบายข้อมูล (Restriction) การกำหนดเงื่อนไขสำหรับการอธิบายข้อมูลเป็นการกำหนดคุณสมบัติในเงื่อนไข ของคอนเซ็ปต์ หรือกำหนดเงื่อนไขสำหรับการอธิบายข้อมูลเชิงความหมาย เช่น ในการอธิบาย ข้อมูลคืดเตียงเดี่ยว (Single Bed) ซึ่งเป็นสับคลาสของเตียง (Bed) จะต้องมีจำนวนได้เพียง 1 เตียท และจากข้อกำหนดนี้สามารถอธิบายด้วยภาษา OWL ดังแสดงโนโอ้ด [owl:Restriction](owl:Restriction) ดังนี้

```
<owl:Class rdf:ID="SingleBed">
    <rdfs:subClassOf>
            <owl:Restriction>
                <owl:cardinality rdf:datatype=http://www.w3.org/2001/XML
                    Schema#int>1</owl:cardinality>
                <owl:onProperty>
                                    <owl:FunctionalProperty rdf:about="#quantity"/>
                                    </owl:onProperty>
        </owl:Restriction>
        </rdfs:subClassOf>
        <rdfs:subClassOf rdf:resource="#Bed"/>
</owl:Class>
จากโค้ดข้างต้นมี quantity เป็น Functional Property ที่มีแท็ก owl:cardi-nality ใช้
``` ระบุจำนวนแก่ สับคลาส SingleBed ของคลาส Bed ว่ามีจำนวนแน่นอน (exactly one) เท่ากับ 1

\section*{3.5 การอธิบายข้อมูลอินสแตนส์}

อินสแตนส์ คือ ข้อมูลที่ถูกอธิบายรายละเอียดด้วยออนโทโลยี อาจจะกล่าวได้ว่า ออนโทโลยีระดับบนจะทำการกำหนด Datatype Property ไว้ ในขณะที่ข้อมูลอินสแตนส์จะนำค่า เหล่านั้นมาอธิบายข้อมูลในระบบ และสามารถทำการบรรยายประโยค (Statement) เพื่อกำหนด

รายละเอียดของอินสแตนส์ให้มีความละเอียดเพิ่มขึ้นได้ ดังโค้ดตัวอย่าง เมื่อกำหนดคลาสคือ "Category-Hotel" ดังนั้น Datatype Property ชื่อ "hasPool" ของคลาส "Category-Hotel" สามารถ นำไปบรรยายข้อมูลที่พักแรมที่เป็นสมาชิกอยู่ในกลุ่มโรงแรม เช่น Wora Bura Resort and Spa ว่ามี สระว่ายน้ำในโรงแรมหรือไม่

> <Category-Hotel rdf:ID="Wora_Bura_Resort_and_Spa">
> <hasPool rdf:datatype="http://www.w3.org/2001/XMLSchema\#boolean
> ">true</hasPool>
> </Category-Hotel>
3.6 การพิจารณาการอนุมานด้วยประเภทของคุณสมบัติ

ในการอธิบายข้อมูลเชิงความหมายนั้นสามารถกำหนดคุณสมบัติประเภทต่าง ๆ เพื่อนำไปพิจารณาการอนุมาน (Reasoning) ซึ่งการอนุมานคือการใช้ความรู้ที่มีอยู่ในออนโท โลยี เพื่อทำการค้นหาข้อเท็จจริงใหม่ ซึ่งถูกสืบทอดจากการพิจาณาข้อเท็จจริงที่มีการบรรยายในออน โทโลยี ซึ่งในงานวิจัยนี้ใช้คุณสมบัติในการพิจารณาการอนุมานพิจารณา ได้แก่ คุณสมบัติแบบอิน เวอร์ส คุณสมบัติแบบฟังก์ชั่น คุณสมบัติแบบฟังก์ชั่นอินเวอร์ส คุณสมบัติแบบทรานส์ซิทีฟ และ คุณสมบัติแบบสมมาตร ซึ่งมีรายละเอียดของแต่ละคุณสมบัติดังต่อไปนี้
 hasRoom


ภาพที่ 115 ตัวอย่างการกำหนดคุณสมบัติแบบอินเวอร์ส

จากภาพที่ 115 สามารถแปลงโค้ดได้ดังนี้ช่วงที่ 1 กำหนด isRoomOftป็น คุณสมบัติแบบอินเวอร์สของ hasRoom
```

<owl:ObjectProperty rdf:ID="isRoomOf">
[owl:inverseOf](owl:inverseOf)
<owl:ObjectProperty rdf:about="\#hasRoom"/>
</owl:inverseOf>

```
<!-- จากนั้นเรียกใช้คุณสมบัติ hasRoom และ isRoomOf กับอินสแตนซ์ ConferenceRoom ดังนี้--!> <ConferenceRoom rdf:ID="Conference_Room">

> <isRoomOf>
> \(\quad\) <Category-Hotel rdf:ID="Sofitel_Centara_Hua_Hin_Resort"> \(\quad\) <hasRoom rdf:resource="\#Conference_Room"/>
> </Category-Hotel>
> </isRoomOf>
> </ConferenceRoom>
> </owl:ObjectProperty>
> การกำหนดให้อินเวอร์สของคุณสมบัติ hasRoom คือ isRoomOf หมายถึง

ในการคิวรีข้อมูลหากมีการกำหนดข้อเท็จจริงว่า Sofitel Centara Hua Hin Resort มีห้องคือ Conference Room ดังนั้นสามารถอนุมานได้ข้อเท็จจริงอีกอย่างว่า Conference Room เป็นห้องของ

Sofitel Centara Hua Hin Resort

\subsection*{3.6.2 คุณสมบัติแบบฟังก์ชั่น (Functional Properties)}


ภาพที่ 116 ตัวอย่างการกำหนดคุณสมบัติแบบฟังก์ชั่น

การกำหนดคุณสมบัติแบบฟังก์ชั่นด้วย owl:FunctionalProperty สามารถ อธิบายด้วยภาพที่ 116 กล่าวคือคุณสมบัติ hasLocation ถูกกำหนดคุณสมบัติแบบฟังก์ชั่น 1 ต่อ 1 นั่นคือ Sofitel Centara Hua Hin Resort มีสถานที่ตั้งเพียงแห่งเดียวในอำเภอหัวหิน คือ 1 Damnernkasem Road, Hua Hin ฉะนั้นหากมีการกำหนดข้อเท็จจริงว่า Sofitel Centara Hua Hin Resort มีพิกัด คือ \(12.50932,99.97062\) ดังนั้นเมื่อมีคำถามเข้ามาในระบบว่า ที่ตั้งของโรงแรมคือที่ใด จะเกิดการอนุมานว่าพิกัด \(12.50932,99.97062\) หรือที่อยู่ 1 Damnernkasem Road, Hua Hin เป็น ที่ตั้งของ Sofitel Centara Hua Hin Resort และทั้งสองคือสถานที่เดียวกัน
3.6.3 คุณสมบัติแบบฟังก์ชั่นอินเวอร์ส (Inverse Functional Properties)


ภาพที่ 117 ตัวอย่างการกำหนดคุณสมบัติแบบฟังก์ชั่นอินเวอร์ส

การกำหนดคุณสมบัติแบบฟังก์ชั่นอินเวอร์สใช้ owl:InverseFunctionalProperty จากภาพที่ 117 ตัวอย่างการกำหนดคุณสมบัติแบบฟังก์ชั่นอินเวอร์สนั้นคุณสมบัติ isLocationOf ถูกกำหนดคุณสมบัติแบบฟังก์ชั่นอินเวอร์ส ที่ใช้เพื่อกำหนดความเป็นเอกลักษณ์ (Unique) ของประธาน (Subject) คือหากมีการกำหนดข้อเท็จจริงว่าพิกัด 12.50932,99.97062 เป็น ที่ตั้งของ Sofitel Centara Hua Hin Resort และเลขที่ 1 Damnernka-sem Road, Hua Hin ก็เป็นที่อยู่ ของ Sofitel Centara Hua Hin Resort ดैวยดังนั้นเราจึงอนุมานได้ว่าทั้งพิกัด \(12.50932,99.97062\) เเละ เลขที่ 1 Damnernka-sem Road, Hua Hin ล้วนเป็นที่ตั้งของ Sofitel Centara Hua Hin Resort จึงเป็น อินสแตนซ์เดียวกัน ตัวอย่างและคำอธิบายโค้ดของการกำหนดคุณสมบัติแบบฟังก์ชั่นและ คุณสมบัติแบบฟังก์ชั่นอินเวอร์ส จนถึงส่วนการเรียกใช้งาน
\(<\)-- - ส่วนกำหนดค่า --!>
<!- -ประกาศให้ hasLocation เป็นคุณสมบัติแบบฟังก์ชั่น --!>
<owl:FunctionalProperty rdf:ID="hasLocation">
<!- -ประกาศให้คลาส Accommodation และ Attraction เป็นโดเมนของคุณสมบัติแบบฟังก์ชั่น --!>
<rdfs:domain><owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="\#Accommodation"/>
<owl:Class rdf:about="\# Attraction"/>
</owl:unionOf>
</owl:Class></rdfs:domain>
<!- - ให้คลาส Location เป็นเรนจ์ของคุณสมบัติแบบฟังก์ชั่น --!>
```

<rdfs:range rdf:resource="\#Location"/>

```

> <!- - ให้ isLocationOfเป็นคุณสมบัติแบบฟังก์ชั่นอินเวอร์ส --!>
<owl:inverseOf>
<owl:InverseFunctionalProperty rdf:ID="isLocationOf"/> </owl:inverseOf>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl\# ObjectProperty"/>
</owl:FunctionalProperty>
แท็ก owl:FunctionalProperty เป็นการประกาศคุณสมบัติ hasLocation เป็น แบบฟังก์ชั่นและ owl:InverseFunctionalProperty เป็นการประกาศคุณสมบัติ isLocationOf เป็น แบบฟังก์ชั่นอินเวอร์ส จากนั้นจึงนำคุณสมบัติ hasLocation และ isLocationOf ไปใช้งานต่อไป ดังตัวอย่างโค้ดต่อไปนี้ใช้อธิบายประกอบภาพที่ 116 และ 117
<!- -ส่วนการเรียกใช้งาน --!>
<Location rdf:ID="Address_Sofitel_Centara_Hua_Hin_Resort"> <hasLatitude rdf:datatype="http://www.w3.org/2001/XMLSch ema\#float">12.50932</hasLatitude>
<hasLongitude rdf:datatype="http://www.w3.org/2001/XMLS

rdf:ID="Sofitel_Centara_HuaHin_Resort">
<hasPostalAddress
rdf:resource="\#DamnernkasemRoad"/>
<hasLocation
rdf:resource="\#AddressSofitelCentralHuaHi nResort"/> <hasPostalAddress>
<HouseNumber rdf:ID="No.1"/>
<Amphoe rdf:ID="Hua_Hin"/>
<Province rdf:ID="Prachuapkirikhan"/>
</hasPostalAddress>
</Category-Hotel>
<isLocationOf>
</Location>
3.6.4 คุณสมบัติแบบทรานซิทีฟ (Transitive Properties)

การกำหนดคุณสมบัติแบบทรานซิทีฟใช้ owl:TransitiveProperty ทำหน้าที่ ส่งผ่านคุณสมบัติของความสัมพันธ์ไปเรื่อยๆ เพื่อให้ต้นกำเนิดและปลายทางมีความหมายดัง คุณสมบัตินั้น หรือกล่าวได้ว่าถ้า \((\mathrm{x}, \mathrm{y})\) เป็นอินสแตนซ์ของ P และ \((\mathrm{y}, \mathrm{z})\) เป็นอินสแตนซ์ของ P แล้ว

ดังนั้น \((\mathrm{x}, \mathrm{z})\) เป็นอินสแตนซ์ของ P ด้วยเหตุผลดังกล่าวทั้ง OWL Lite และ OWL DL จึงต้องมีคำ เตือนว่าทั้งคุณสมบัตินั้นและซูปเปอร์พร็อพเพอร์ตี้ที่เป็นทรานซิทิฟไม่สามารถตั้งเงื่อนไขให้มี \(\operatorname{maxCardinality}=1\) ได้เลย สามารถอธิบายด้วยภาพที่ 118 ตัวอย่างการกำหนดคุณสมบัติแบบ ทรานซิทีฟ


ภาพที่ 118 ตัวอย่างการกำหนดคุณสมบัติแบบทรานซิทีฟ
จากภาพคุณสมบัติ isLocatedIn เป็นคุณสมบัติแบบทรานซิทีฟ กล่าวคือ หากมีการอธิบายข้อมูลว่าตำบลหนองแกตั้งอยู่ในอำเภอหัวหินและอำเภอหัวหินตั้งอยู่ในจังหวัด ประจวบคีรีขันธ์แล้วสามารถอนมานได้ว่าตำบลหนองแกตั้งอยู่ในจังหวัดประจวบคีรัขันธ์ โดย ทั้งหมดเกิดขึ้นในคอนเซปต์ดดียวกันคือ Location สามารถเขียนเป็นคำสั่ง OWL ได้ด้งต่อไปนี้
```

<!- - การกําหนดคุณสมบัติแบบทรานซิทีฟ --!>
<owl:TransitiveProperty rdf:about="\#isLocatedIn">
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl\#ObjectProperty"/>
<rdfs:domain rdf:resource="\#Location"/>
<rdfs:range rdf:resource="\#Location"/>
</owl:TransitiveProperty>
<!-- การนําคุณสมบัติทรานซิที\ไปใช้กับอินสแตนซ์ --!>
<Tumbon rdf:ID="T_Huahin">
<isLocatedIn>
<Amphoe rdf:ID="A_HuaHin"/>
<Province rdf:ID="Prachuabkirikhan"/>
</isLocatedIn>
</Tumbon>

```
3.6.5 คุณสมบัติแบบสมมาตร (Symmetric Properties)
bordersWith

T.Hua-Hin
bordersWith
ภาพที่ 119 ตัวอย่างการกำหนดคุณสมบัติแบบสมมาตร

กำหนดคุณสมบัติแบบสมมาตรด้วย owl:SymmetricProperty จากภาพที่
119 มีคุณสมบัติ bordersWith ถูกกำหนดเป็นคุณสมบัติแบบสมมาตร กล่าวคือหากมีการอธิบาย ข้อมูลว่าตำบลหนองแกอยู่ติดกับตำบลหัวหินแล้วในทางกลับกันจะมีข้อเท็จจริงว่าตำบลหัวหินอยู่ ติดกับตำบลหนองแกเช่นกัน ดังนั้นระบบสามารถตอบคำถามได้ถึง 2 คำถาม ได้แก่ "ตำบลที่อยู่ติด กับตำบลหัวหินคือตำบลใด" และ "ตำบลที่อยู่ติดกับตำบลหนองแกคือตำบลใด" ซึ่งคุณสมบัตีที่ กำหนดนี้จะต้องมี โดเมนแแะเรนจ์ประเภทเดียวกัน
(2) - ส่วนกำหนดให้คณสมบัติ nearby เป็น SymmetricProperty
<!-- การเรียกใช้ด้วยแท็ก bordersWith --!>
<Tumbon rdf:ID="T_Huahin">
< bordersWith >
<Tumbon rdf:ID="T_Nongkae"> < bordersWith rdf:resource="\#T_Huahin"/>
</Tumbon>
</bordersWith>
</Tumbon>
3.7 การพิจารณาการอนุมานด้วยประเภทของเงื่อนไข

ในภาษา OWL มีการใช้คุณสมบัติเพื่อสร้างเงื่อนไขดังที่กล่าวนำไว้ในข้อ 4 แล้ว นำไปใช้เพื่อกำหนดข้อบังคับแก่อินสแตนซ์ที่เป็นสมาชิกของคลาสใดๆ เราสามารถแบ่งเป็น 3 ประเภทคือเงื่อนไขบ่งปริมาณ (Quantifier Restrictions) เงื่อนไขบอกจำนวน (Cardinality

Restrictions) และเงื่อนไขบอกค่า (hasValue Restrictions) ซึ่งสามารถอธิบายรายละเอียดแต่ละ ประเภทได้ดังนี้
3.7.1 เงื่อนไขบ่งปริมาณ (Quantifier Restrictions) เป็นการสร้างข้อจำกัดในรูป แบบ Existential Quantifier และ Universal Quantifier ซึ่งมีรายละเอียดดังนี้
3.7.1.1 Existential Quantifier ( \(\exists\) ) ใช้เพื่อกำหนดค่า at least one หรือ some แท็กที่ใช้คือ owl:someValuesFrom กรณีที่มีประโยคเช่น "A Safari is a recreation site that has at least one Elephant Trekking Activity." สามารถเขียนภาษา OWL ได้ดังนี้
<owl:Class rdf:about="\#Safari">
<rdfs:subClassOf>
<owl:Restriction>
<owl:someValuesFrom rdf:resource="\#Elephant
Trekking"/>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="hasActivity"/>
</owl:onProperty>
</owl:Restriction>

3.7.1.2 Universal Quantifier \((\forall)\) ใช้เพื่อกำหนดค่า only แท็กที่ใช้คือ owl:allValuesFrom กรณีที่มีประโยคเช่น "Paintballing is an adventure that can be done only at the safari." สามารถเขียนภาษา OWL ได้ดังนี้
<owl:Class rdf:about="\#Paintballing">
<rdfs:subClassOf rdf:resource="\#Adventure">
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="canBeDoneAt"/>
</owl:onProperty>
<owl:allValuesFrom>
<owl:Class rdf:ID="Safari"/>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
3.7.2 เงื่อนไขบอกจำนวน (Cardinality Restrictions) ประกอบด้วยแท็ก minCardinality ใช้เพื่อบอกขอบเขตล่างของจำนวนที่กำหนด แท็ก maxCardinality เพื่อบอก

ขอบเขตบนของจำนวนที่กำหนดซึ่งอาจใช้ทั้ง minCardinality และ maxCardinality พร้อมกันได้ เพื่อบอกจำนวนแบบช่วงและแท็ก Cardinality เพื่อบอกจำนวนที่เฉพาะเจาะจง ดังตัวอย่างโค้ด
<! - การใช้ minCardinality --!>
<owl:Class rdf:about="\#Accommodation">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="hasFacility"/> </owl:onProperty>
<owl:minCardinality rdf:datatype="http://www.w3.org/2001
/XMLSchema\#int">1</owl:minCardinality>
</owl:Restriction>
</rdf:subClassOf>
</owl:Class>
จากโค้ดตัวอย่างการใช้ minCardinality เป็นการกำหนดว่าสับคลาสของ
Accommodation ต้องมีสิ่งอำนวยความสะดวกอย่างน้อย 1 ชนิดด้วยคุณสมบัติ hasFacility และตัว
บ่งปริมาณ owl:minCardinality ที่มีค่ามากกว่าหรือเท่ากับ \((\geq) 1\)
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:FunctionalProperty rdf:ID="isInLocation"/>
</owl:onProperty>
<owl:maxCardinality rdf:datatype="http://www.w3.org/
2001/XMLSchema\#int">1</owl:maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl
\#Thing"/>
</owl:Class>
จากโค้ดตัวอย่างการใช้ maxCardinality เป็นการกำหนดว่าสับคลาสของ Location ต้องมีที่ตั้งได้มากสุด 1 สถานที่ด้วยคุณสมบัติ isInlocation และตัวบ่งปริมาณ owl:maxCardinality ที่มีค่าน้อยกว่าหรือเท่ากับ \((\leq) 1\)

> <! - การใช้ maxCardinality และ minCardinality กำหนดช่วง--!> <owl:Class rdf:about="\#Facility">
```

<rdfs:subClassOf
rdf:resource="http://www.w3.org/2002/07/owl\#Thing"/>
[rdfs:subClassOf](rdfs:subClassOf)
[owl:Restriction](owl:Restriction)
<owl:minCardinality rdf:datatype="http://www.w3.org/
2001/XMLSchema\#int">1</owl:minCardinality>
[owl:onProperty](owl:onProperty)
<owl:DatatypeProperty rdf:ID="name"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClassOf>
[rdfs:subClassOf](rdfs:subClassOf)
[owl:Restriction](owl:Restriction)
<owl:maxCardinality rdf:datatype="http://www.w3.org/
2001/XMLSchema\#int">5</owl:maxCardinality>
[owl:onProperty](owl:onProperty)
<owl:DatatypeProperty rdf:about="\#name"/>
</owl:onProperty>

```


จากโค้ดตัวอย่างการใช้ minCardinality และ maxCardinality เป็นช่วงโดยกำหนด ชื่อของสิ่งอำนวยความสะดวกแต่ละชนิดด้วย owl:DatatypePropert คือ name ว่ามีแตก ต่างกันได้ น้อยที่สุด 1 ชื่อและมากที่สุด 5 ชื่อ
<! - การใช้ Cardinality --!>
<owl:Class rdf:ID="SingleBed">
<rdfs:subClassOf rdf:resource="\#BedFacility"/>
<ddfs:subClassOf>
<owl:Restriction>
<owl:cardinality rdf:datatype="http://www.w3.org/2001
/XMLSchema\#int">1</owl:cardinality>
<owl:onProperty>
<owl:FunctionalProperty rdf:about="\#quantity"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
จากโค้ดตัวอย่างการใช้ Cardinality เป็นการกำหนดจำนวนเตียงเดี่ยว
ด้วย owl:FunctionalProperty คือ quantity ว่ามีจำนวนเตียง 1 เตียง
```

3.7.3 เงื่อนไขบอกค่า (hasValue Restrictions) ใช้คำสั่ง hasValue $<$ ! -- กำหนดให้อินสแตนซ์ Hotel เป็นสมาชิกคลาส Category --!>
<Category rdf:ID="Hotel"/>
$<$ !--นำไปไช้กับ owl:hasValue --!>
<owl:Class rdf:ID="Category-Hotel">
$<$ rdfs:subClassOf>
[owl:Restriction](owl:Restriction)
[owl:onProperty](owl:onProperty)
<owl:ObjectProperty rdf:ID="hasCategory"/>
</owl:onProperty>
[owl:hasValue](owl:hasValue)
$<$ Category rdf:ID="Hotel"/>
</owl:hasValue>
</owl:Restriction>
</rdfs:subClassOf>
[rdfs:subClassOf](rdfs:subClassOf)
<owl:Class rdf:ID="Accommodation"/>

```
 subClassOf Accommodation, and a subClassOf an anonymous class which has a property hasCategory - that has the value Hotel. หรือถ้าให้อ่าน่ายขึ้นสามารถอ่านได้ว่า The CategoryHotel class is a subClassOf Accommodation. Every Category-Hotel has a 'hasCategory' property whose value is Hotel. ดังนั้น owl:hasValue เป็นการระบุค่าคงที่ที่เป็นจริงเสมอแก่คลาสนั่นเอง จาก ตัวอย่างนี้เป็นการกำหนดค่าคงที่ Hotel เพื่ออธิบายคอนเซปต์ Category-Hotel ด้วยคุณสมบัติ hasCategory
3.8 การกำหนดความเท่าเทียมกัน (Equality or Inequality)

การกำหนดความเท่าเทียมกันประกอบด้วยการกำหนด equivalentClass กำหนด equivalentProperty การกำหนด sameAs การตั้งค่า differentFrom การตั้งค่า AllDifferent และการ กำหนด distinctMembers
3.8.1 การกำหนด equivalentClass ใช้เพื่อกำหนดว่าคลาสนั้นเท่าเทียมกับคลาส อื่น รวมถึงกลุ่มของอินสแตนซ์ที่ต้องเป็นกลุ่มเดียวกันด้วย เราใช้ประ โยชน์ในการสร้าง คลาสที่มี ความหมายเหมือนกัน (synonymous class) ซึ่งสามารถใช้กับไฟล์ owl เดียวกันหรือคนละไฟล์ก็ได้ แต่ต้องเป็นคนละโดเมนกันเช่นถ้าบอกว่าคลาส Accommodation เป็น equivalentClass กับคลาส

PlaceOfResidence แล้วตัว reasoner สามารถพิจารณาเหตุผลได้ว่าสมาชิกของคลาส Accommodation กับคลาส PlaceOfResidence ย่อมกลายเป็นสมาชิกของกันและกัน ดังโค้ดด้านล่าง
```

<!--ประกาศเนมสเปซ --!>
<?xml version="1.0"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns\#"
xmlns="http://www.owl-ontologies.com/HHOntoTourismP.owl\#"
xmlns:owl="http://www.w3.org/2002/07/owl\#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema\#"
xml:base="http://www.owl-ontologies.com/HHOntoTourismP.owl"
>
<owl:Ontology rdf:about="">
<rdfs:label xml:lang="en">Class Hierarchy for Tourism Ontology
</rdfs:label>
<owl:versionInfo xml:lang="en">1.0</owl:versionInfo>

```
                                    OntoTourismP1.owl"/>
                                    </owl:Ontology>
                                    <!-- ใช้ owl:equivalentClass กำหนดคลาสต่าง โดเมนสมมูลกัน--!>
                                    <owl:Class rdf:ID="PlaceOfResidence">
                                    <rdfs:subClassOf rdf:resource="http://www.w3.org/2002
                                    /07/owl\#Thing"/>
                            <owl:equivalentClass>
                            <rdf:Description rdf:about="http://www.owl-ontologies.com/
                        HHOntoTourismP1.owl\#Accommodation">
                            <owl:equivalentClass rdf:resource="\#PlaceOfResidence"/>
                            </rdf:Description>
                            </owl:equivalentClass>
</owl:Class>
</rdf:RDF>
    จากตัวอย่างโค้ดและดูภาพที่ 120 ประกอบการอธิบาย ขั้นแรกอิม-พอร์ต
ismP.owl (กำหนดเป็น \(p\) ) จาก นั้นกำหนด owl:equivalentClass ในไฟล์ p ให้คลาส \(p 1: H H O n t o-\) TourismP1.owl\#Accommodation \(\equiv\) p:HHOntoTourismP.owl\#PlaceOfResidence หลังจากนั้นจะ ได้ผลลัพธ์เป็น "Accommodation is equivalent to PlaceOfResidence." หรือ Accommodation สมมูลกับ PlaceOfResidence ซึ่งสามารถอธิบายด้วยภาพที่ 121 ได้ว่าทั้ง 2 โดเมนจะมีอินสแตนซ์ กลุ่มเดียวกันคือที่พักประเภท Hotel ประเภท Bangalow ประเภท Resort ประเภท GuestHouse และ ประเภท Others นอกจากนั้นคุณสมบัติและเงื่อนไขของคลาส Accommodation ก็จะได้รับการถ่าย ทอด (Inherited) จาก p1:Accommodation มาอยู่ภายใต้เงื่อนไขของคลาส \(p\) :PlaceOfResidence ด้วย


ภาพที่ 120 แผนภาพแสดงการอิมพอร์ตและสมมูลระหว่าง 2 โดเมน


ภาพที่ 121 การใช้ owl:quivalentClass ทำให้ทั้ง 2 โดเมนจะมีอินสแตนซ์กลุ่มเดียวกัน
3.8.2 การกำหนด equivalentProperty เพื่อทำให้สองคุณสมบัติสมมูลกัน มักใช้ใน การแมพออนโทโลยี ตัวอย่างดังภาพที่ 122 การสมมูลกันระหว่างคุณสมบัติชื่อบ้านhouseTitle จาก คลาส PlaceOfResidence และคุณสมบัติชื่อที่พักแรม name จากคลาส Accommodation ทำให้ อนุมานได้ว่าถ้า Accommodation มีคุณสมบัติ name เป็น Hilton_Hotel แล้ว คลาสAccommodation ย่อมสัมพันธ์กับ Hilton_Hotel โดยใช้คุณสมบัติ houseTitle ของคลาส PlaceOfResidence ด้วย เช่นเดียวกัน ซึ่งสามารถกำหนด owl: equivalentProperty ได้ดังโค้ดด้านล่าง

"Hilton HuaHin" "Sofitel Centara Resort" "Intercontinental"

ภาพที่ 122 การใช้ owl:quivalentProperty ทำให้คุณสมบัติ name สมมูลกับ houseTitle
\[
\begin{aligned}
& \text { <owl:DatatypeProperty rdf:ID="houseTitle"> } \\
& \text { <owl:equivalentProperty rdf:resource="http://www.owl- } \\
& \text { ontologies .com/HHOntoTourismP 1.owl\#name"/> } \\
& \text { <rdfs:range rdf:resource="http://www.w3.org/2001/XML } \\
& \text { Schema\#string"/> } \\
& \text { <rdfs:domain rdf:resource="\#PlaceOfResidence"/> } \\
& \text { </owl:DatatypeProperty> }
\end{aligned}
\]
3.8 .3 การกำหนด sameAs เพื่อระบุว่าทั้งสองอินสแตนซ์หมายถึงสิ่งเดียวกันตัวอย่างการใช้งานคืออินสแตนซ์หนึ่งมีชื่อที่แตกต่างกันหลายชื่อ เช่น สิ่งอำนวยความสะดวกของที่พัก แรมหนึ่งคือ Conference_Room แต่อีกแห่งหนึ่งระบุว่าเป็น Meeting_room ชึ่งทั้งสองชื่อหมาย ถึง สิ่งเดียวกัน สามารถเขียนแทนด้วยโค้ดด้านล่าง
```

<ConferenceRoom rdf:ID="Meeting_room">
    <owl:sameAs rdf:resource="#Conference_Room"/>
</ConferenceRoom>
```
3.8.4 การตั้งค่า differentFrom เพื่อใช้ระบุในระดับอินสแตนซ์ว่าหมายถึงสิ่งของ คนละสิ่งกัน ซึ่งมีข้อควรระวังในกรณีที่ตั้งค่าอินสแตนซ์ \(\mathrm{I}_{1}\) และ \(\mathrm{I}_{2}\) เชื่อมกับคลาส C ด้วย functionalProperty แล้วต้องระบุด้วยว่าค่ามากที่สุดของอินสแตนซ์ที่จะเป็นสมาชิกได้นั้นคือ 1 ด้วย ไม่เช่นนั้นตัวอนุมานในภาษา OWL หรือ RDF จะไม่สามารถสรุปได้ถูกต้องว่าอินสแตนซ์นั้นๆ แตกต่างกัน โดยสมบูรณ์ ตัวอย่างการใช้ owl:differentFrom เป็นดังโค้ดด้านล่าง ซึ่งสามารถอธิบาย Meeting_Place ที่เป็นสิ่งอำนวยความสะดวกของที่พักแรมจำพวกเดียวกับ Hall นั้นไม่ใช่สิ่งเดียวกับ Meeting_Room
\[
\begin{aligned}
& \text { <Hall rdf:ID="Meeting_Place"> } \\
& \quad \text { <owl:differentFrom rdf:resource="\#Meeting_room"/> }
\end{aligned}
\]
</Hall>
3.8.5 การตั้งค่า AllDifferent เพื่อกล่าวว่าอินสแตนซ์ทุกตัวไม่ใช่สิ่งเดียวกันอย่าง ชัดเจน ซึ่งแตกต่างจากการใช้คำสั่ง differenctFrom ตรงที่ AllDifferenct เหมาะสำหรับการระบุ อินสแตนซ์ที่มีชื่อเป็นเอกลักษณ์ โดยต้องใช้คู่กับคำเชื่อม distinctMembers เพื่อประกาศว่า อินสแตนซ์ทุกตัวในกลุ่มนั้นแตกต่างอย่างชัดเจนหรือดิสจอยน์ซึ่งกันและกันอย่างแน่นอน

ตัวอย่างโค้ดต่อไปนี้กล่าวถึงคลาสชายหาดชื่อ Beach ที่มีอินสเตนซ์อยู่ 3
หาดคือหาดเขาตะเกียบชื่อ Khao Takaib Beach หาดเขาเต่าชื่อ Khao_Tao_Beach และหาดหัวหิน ชื่อ Hua_Hin_Beach ซึ่งทั้งสามหาดมีชื่อเป็นเอกลักษณ์และหมายถึงต่างสถานที่กันอย่างแน่นอน

> <owl:AllDifferent>
> <owl:distinctMembers rdf:parseType="Collection">
> \(\quad\) <Beach rdf:ID="Khao_Takaib_Beach"/>
> \(\quad\) <Beach rdf:ID="Khao_Tao_Beach"/>
> \(\quad\) <Beach rdf:ID="Hua_Hin_Beach"/>
> </owl:distinctMembers>
> </owl:AllDifferent>
3.9 การกำหนดสัจพจน์เกี่ยวกับคลาส

การกำหนดสัจพจน์เกี่ยวกับคลาส โดยนำมาใช้ในประโยคบรรยายคลาส
ประกอบด้วยคำสั่ง dataRange คำสั่ง rdfs:subClassOf คำสั่ง equivalentClass ซึ่งได้ยกตัวอย่างใน หัวข้อก่อนหน้านี้แล้ว จึงเหลือคำสั่ง one of และคำสั่ง disjointWith ที่จะกล่าวถึงดังคำอธิบาย ภาพประกอบ และตัวอย่างโค้ดดังต่อไปนี้
3.9.1 การกำหนด Enumerate Class ด้วย owl:OneOf การ Enumerate Class เป็น การบรรยายสมาชิกในคลาส
<owl:Class rdf:ID="Category">
<owl:oneOf rdf:parseType="Collection">
<Category rdf:about="\#Category_Hotel"/>
<Category rdf:ID="Category_Bangalow"/>
<Category rdf:ID="Category_Resort"/>
<Category rdf:about="\#Category_Guesthouse"/>
<Category rdf:about="\#Category_Others"/>
</owl:oneOf>
</owl:Class>
3.9.2 การกำหนดดิสจอยน์คลาส คือการกำหนดเงื่อนไขให้คลาสว่าอินสแตนซ์ ของคลาสไม่สามารถเป็นอินสแตนซ์ของอีกคลาสที่ดิสจอยน์กันอยู่ได้ โดยใช้ owl:disjointWith ตัวอย่างการนำไปใช้เพื่ออธิบายภาพที่ 123 ดังโค้ดต่อไปนี้


ภาพที่ 123 การกำหนดดิสจอยน์คลาส
```

<owl:Class rdf:about="\#MuayThai">
<owl:disjointWith rdf:resource="\#WaterSports"/>
[rdfs:subClassOf](rdfs:subClassOf)
<owl:Class rdf:about="\#Sport"/>
</rdfs:subClassOf>
</owl:Class>

```

คำอธิบายตัวอย่างโโ้ดและภาพที่ 123 คือกีพามวยไทยและกีพาทางน้ำเป็น สับคลาสของกีพาที่ดิสจอยน์กัน นั่นคือสมาชิกที่เป็นอินสแตนซ์ของคลาสมวยไทยเช่นสนามมวย ไม่สามารถเป็นสถานที่เล่นกีพาทางน้ำได้
3.10 Boolean Combinations of Class Expressions

Boolean Combinations of Class Expressions ประกอบด้วย unionOf, complementOf และ intersectionOf
3.10.1 unionOf หมายถึงคลาสของอินสแตนซ์ที่เป็นสมาชิกของคลาส A หรือ คลาส B หรือทั้งสองคลาส ดังภาพที่ 124 ตัวอย่างการใช้ unionOf ในกรณีที่เป้าหมายของ นักท่องเที่ยวแบบ Backpacker มีเป้าหมายการท่องเที่ยวเป็นกิจกรรมแบบการผจญูภัยและกีฬา สามารถเขียนโค้ดด้วย owl:unionOf ดังตัวอย่างด้านล่าง


> <!-- กำหนดคลาสเป้าหมายของนักท่องเที่ยว --!>
> <owl:Class rdf:ID="BackpackerDestination">
> <rdfs:subClassOf>
> <!-- ประกาศเงื่อนไข --!>
> \(\quad\) <owl:Restriction>
> <owl:onProperty>
> <!-- ประกาศคุณสมบัติ hasActivity --!>
> <owl:ObjectProperty rdf:about="\#hasActivity"/>
> </owl:onProperty>
> <owl:someValuesFrom>
> <owl:Class>
> <!-- การใช้ owl:unionOf --!>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="\#Sport"/>
<owl:Class rdf:about="\#Adventure"/>
</owl:unionOf>
</owl:Class>
```

</owl:someValuesFrom>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="\#TouristDestination"/>
</owl:Class>

```
3.10.2 complementOf ใช้ในกรณีที่คลาสมีสมาชิกเป็นอินสแตนซ์ทั้งหมดยกเว้น คลาสนั้นดังตัวอย่างในภาพที่ 125 เมื่อนักท่องเที่ยวมีจุดหมายแบบ QuietDestination แล้วสถานที่ ท่องเที่ยวต้องไม่ใช่ประเภท Entertainment ซึ่งสามารถเขียนโค้ดได้ดังตัวอย่าง โดยใช้ owl:complementOf คลุมไว้

\section*{QuietDestination \(\equiv \neg\) EntertainmentAttraction}

\(<\) !-- กำหนดคลาสเป้าหมายของนักท่องเที่ยว --!>
<owl:Class rdf:ID="QuietDestination">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="\#Attraction"/>
\(<\) !- ระบุคลาสที่ไม่ได้อยู่ในเป้าหมาย \(--!>\)
<owl:Class>
<owl:complementOf rdf:resource="\#Entertainment"/>
</owl:Class>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
<rdfs:subClassOf rdf:resource="\#TouristDestination"/>
</owl:Class>
3.10.3 intersectionOf ใช้ในกรณีที่คลาสของอินสแตนซ์เป็นสมาชิกของทั้งคลาส A และ B ตัวอย่างเช่นนักท่องเที่ยวที่มีเป้าหมายแบบ CulturalDestination นั้นมีจุดมุ่งหมาย ระหว่างแหล่งท่องเที่ยวแบบ Cultural และ LocalActivity ดังรูปที่ 126 และสามารถเขียนโค้ดโดย ใช้ owl:intersectionOf คลุมดังตัวอย่างด้านล่าง


ภาพที่ 126 การใช้ intersectionOf

> <!-กำหนดเงื่อนไขของ CulturalDestination--!>
<owl:someValuesFrom>
<owl:Class>
\(<\) !--ระบุคลาสเป้าหมายของนักท่องเที่ยวที่อยู่ระหว่างกัน--!>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="\#Cultural"/>
<owl:Class rdf:about="\#LocalActivity"/>
</owl:intersectionOf>
</owl:Class>
</owl:someValuesFrom>
<!--ระบุคุณสมบัตที่ใช้เป็นความสัมพันธ์--!>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="hasAttraction"/>
</owl:onProperty>
</owl:Restriction>
</owl:equivalentClass>
ในกรณีที่ตีองการกำหนดคลาสแบบ implicit intersectionOf ที่ ใช้สำหรับการบรรยายลักษณะของคลาสใดคลาสหนึ่งที่ประกอบด้วยค่า intersection ระหว่างคลาส

ที่ใช้อธิบายซึ่งการเขียนโค้ดแตกต่างจาก intersection ธรรมดาคือไม่ต้องมี <owl:equivalentClass> คลุมระหว่างคลาสที่ใช้อธิบาย ดังโค้ดตัวอย่างที่ใช้วิธีอธิบายว่า BudgetHotelนั้นต้องเป็น Hotel และ มีระดับราคา Price-Rate-3 เรียงลำดับกันดังนี้


ภาพที่ 127 การใช้ implicit intersectionOf
```

$<$ !-กำหนดคลาส BudgetHotel ที่ต้องการอธิบาย --!> <owl:Class rdf:about="\#BudgetHotel">

```


จากการนำเสนอภาคผนวกนี้แสดงให้เห็นว่าโปรแกรมที่สร้างมีลักษณะของ \(\operatorname{SHION}(\) (D) ซึ่งครอบคลุมหลักของ OWL DL ครบถ้วน

\section*{การใช้งานโปรแกรมสร้างออนโทโลยี}

ภาคผนวก จ นี้ประกอบด้วยการติดตั้งโปรแกรมโดยเรียงลำดับตามขั้นตอนการทำงาน ดังต่อไปนี้ การติดตั้งและใช้โปรแกรม Protégé เพื่อสร้างออนโท โลยี การติดตั้งและใช้ JENA API เพื่อเขียนโปแกรม และการติดตั้งโปรแกรมผลงานวิทยานิพนธ์เพื่อให้งาน โดยจะอธิบายรายละเอียด เฉพาะที่เกี่ยวข้องในขอบเขตของงานวิจัย จากนั้นจึงยกตัวอย่างตามแต่ละกรณีดีงต่อไปนี้

\section*{1. การติดตั้งและใช้โปรแกรม Protégé เพื่อสร้างออนโทโลยี}

ในการสร้างออนโทโลยีต้นแบบในงานวิจัยนี้ ใช้โปรแกรม Protégé 3.3.1 โดยผู้พัฒนา สามารถดาวน์โหลดเวอร์ชันล่าสุดได้จาก http://protege.stanford.edu/ ที่หัวข้อ download ด้าน ซ้ายมือ จากนั้นเลือกประเภทของตัวติดตั้งซึ่งมีทั้งประเภทที่มี Java VM และไม่มี Java VM ให้ เลือกใช้ จากนั้นทำการติดตั้งลงในคอมพิวเตอร์ที่ใช้พัฒนา ซึ่งในงานวิจัยนี้ใช้ Protégé 3.3 .1 ซึ่ง ครอบคลุมการทำงานในด้านต่อไปนี้
1.1 การสร้างและบันทึกโครงการ (Project)

การสร้างโครงคารใหม่และบันทึกโครงการเริ่มจากเปิดโปรแดรม Protege ขึนนา จะปรากฏหน้าจอต้อนรับเข้าสู่โปรแกรมเพื่อให้ผู้ใช้สรรางโครงการใหม่ เปิดโครงการที่มีอยู่แล้ว หรือดูข้อความช่วยเหลือ ให้เลือก New Project ดังภาพที่ 128


ภาพที่ 128 หน้าจอเข้าสู่โปรแกรม Protégé 3.3.1

จากนั้นจะปรากฎหน้าจอ Create New Project เลือกรูปแบบของไฟล์ที่ต้องการ สร้าง แล้วกดปุ่ม Next แล้วเติมรายละเอียดจนจบ หรือกดปุ่ม Finish เพื่อจบ Project ในงานวิจัยนี้ให้ เลือก RDF/OWL File แล้วคลิก Next ดังภาพที่ 129


ภาพที่ 129 หน้าจอเลือกรูปแบบไฟล์เพื่อสร้างโครงการ

กำหนดชื่อ URI ของออนโทโลยี ในงานวิจัยนี้ใส่ชื่อที่เกี่ยวกับการท่องเที่ยวแทน เลขดีฟอลต์ของโปรแกรม http://www.owl-ontologies.com/ HHOntoTourism1 1.owl แล้วกด Next ดังภาพที่ 130 แล้วจะพบหน้าจอเลือกโปรไฟล์ระดับภาษา OWL ของโครงงาน ให้เลือก OWL-DL แล้วกด Next ดังภาพที่ 131 จากนั้นจะปรากฎหน้าจอมุมมองคลาสของ OWL ให้เลือก Logic View จากนั้นกด Finish เพื่อจบการตั้งค่าเบื้องต้นเพื่อสร้างโครงการใหม่ ดังภาพที่ 132


ภาพที่ 130 หน้าจอตั้งชื่อ URI ของออนโทโลยีของโครงการหรือปล่อยตามค่าปกติ


Which OWLRDF dialect do you want to use?
You can select which elements of OML and RDF you want to use in your project. You can change these settings later at any time, using OML.Preferences. For example, if you select OML Lite, then you cannot create owl:unionOf classes, and if you select pure RDF then you can only create rdf:Properties and rdfs:Classes.

ภาพที่ 131 หน้าจอเลือกโปรไฟล์ระดับภาษา OWL ของโครงงาน


ภาพที่ 132 หน้าต่างของโปรแกรม Protégé 3.3.1 และแท็บมาตรฐานต่างๆ ในการทำงาน

"Save Project As" ที่เมนู File จากนั้นจะปรากฏหน้าจอดังภาพที่ 133 เพื่อกรอกชื่อโครงการและที่ อยู่ของโครงการ จากนั้นกดปุ่ม OK


ภาพที่ 133 หน้าต่างบันทึกชื่อและที่อยู่โครงการ
1.2 การสร้าง Classes ขั้นตอนสร้างคลาส มีรายละเอียดคือการสร้างคลาส สับ คลาส และตั้งค่าดิสจอยน์ให้แก่คลาส ดังต่อไปนี้
1.2.1 การสร้างคลาสและสับคลาส ขอยกตัวอย่างการสร้างคลาสที่พักแรม (Accommodation) ซึ่งโปรแกรมมีเครื่องมือช่วยอยู่ 3 แบบ คือ Create subclass, Create sibling class และ Delete selected class(es) ซึ่งมีรายละเอียดการใช้งานดังนี้


ภาพที่ 134 หน้าจอส่วนแก้ไขข้อมูลคลาสและส่วนประกอบ
1.2.1.1 เมนู Create subclass เนื่องจากคลาสรากของทุกโครงงานจะเป็น Thing ดังนั้นการสร้างคลาสแรก โปรแกรมจะให้ใช้เฉพาะเมนู Create subclass เท่านั้น ดังภาพที่ 81 ดังนั้นเลือกเมนู Create subclass เพื่อสร้างคลาสแรก ในที่นี้คือ Accommodation ดังภาพที่ 82 ด้วย การเติมชื่อคลาสและรายละเอียดของคลาสลงในหน้าจอฝั่งขวามือจากนั้นกด Enter หรือคลิกที่ชื่อ คลาสด้านซ้ายที่มีแถบสีอยู่ เพื่อให้ชื่อคลาสที่เปลี่ยนแปลงไปปรากฏ


ภาพที่ 135 สร้างคลาสแรก เลือกเมนู Create subclass


ภาพที่ 136 เติมชื่อคลาสและรายละเอียดของคลาสลงในหน้าจอฝั่งขวามือ กรณีที่ต้องการสร้างสับคลาสของคลาสใดๆ ให้คลิกที่คลาสแม่ แล้วกดปุ่ม Create subclass เช่นกัน ซึ่งมีข้อสังเกตว่า เมื่อได้สร้างสับคลาสแรกให้กับคลาสใดๆ จะ ปรากฏเครื่องหมาย \(>\) ในกรณีซ่อนสับคลาส หรือ \(>\) ในกรณีขยายสับคลาส ที่ด้านซ้ายของคลาส 1.2.1.2 เมนู Create sibling class คือการสร้างคลาสพี่น้อง หรือคลาสที่ อยู่ในระดับเดียวกับคลาสที่เรากำหนด ในที่นี้ได้แก่การสร้างคลาส Attraction ให้ผู้ใช้คลิกที่คลาส Accommodation จากนั้นกดเมนู Create sibling class ดังภาพที่ 83 จากนั้นเติมชื่อคลาสและ รายละเอียดของคลาสลงในหน้าจอฝั่งขวามือจากนั้นกด Enter หรือคลิกที่ชื่อคลาสด้านซ้ายที่มีแถบ สีอยู่ เพื่อให้ชื่อคลาสที่เปลี่ยนแปลงไปปรากฤดังภาพที่ 137


ภาพที่ 137 การเลือกเมนู Create sibling class เพื่อสร้างคลาสในระดับเดียวกัน


ภาพที่ 138 การสร้าง Sibling class
1.2.1.3 เมนู Delete selected class(es) คือการลบคลาสที่ไม่ใช้ ซึ่ง สามารถลบทีละคลาสหรือหลายคลาสพร้อมกันโดยกดปุ่ม Shift พร้อมกับเลือกเมนูนี้ ดังภาพที่ 139


การตั้งค่าคลาสให้ดิสจอยน์กัน สามารถทำได้โดยเลือกคลาสที่ต้องการ จากนั้นเลือกใช้เครื่องมือดิสจอยน์ในภาพที่ 140 ตามต้องการ ซึ่งประกอบด้วยปุ่มการดิสจอยน์ คลาสจาก OWL Expression ปุ่มการสร้างดิสจอยน์คลาสจากคลาสโดยตรง ปุ่มการสร้างดิสจอยน์ คลาสจากระดับเดียวกันทั้งหมดมากกว่า 1 คลาส ปุ่มการยกเลิกคลาสที่ดิสจอยน์จากระดับเดียวกัน ทั้งหมดมากกว่า 1 คลาส และปุ่มการยกเลิกคลาสที่ดิสจอยน์ตามบรรทัดที่เลือก


ภาพที่ 140 เมนูต่างๆ ที่เกี่ยวข้องกับการตั้งค่าดิสจอยน์แก่คลาส


การกำหนดคลาสให้ดิสจอยน์กันมี 3 ขั้นตอน ดังภาพที่ 141 นั่นคือต้องการ ตั้งค่าคลาส GPSCoordinates และคลาส PostalAddress ให้ดิสจอยน์กัน อันดับแรกให้เลือกคลาสที่ ต้องการคือ GPSCoordinates ขั้นที่สองกดปุ่มแบบที่ต้องการ ในที่นี้เลือกปุ่มการสร้างดิสจอยน์จาก คลาสโดยตรง หน้าต่างขั้นที่สามคือการสร้างเงื่อนไขจะปรากฎขึ้นให้เลือกเฉพาะคลาสเดี่ยวตามปุ่ม ที่เลือก ให้เลือกคลาส PostalAddress แล้วหน้าต่างสามจะหายไป สุดท้ายจะปรากฏชื่อคลาสในร หน้าต่าง Disjoints Editor
1.3 การสร้าง Properties แบ่งเป็นการสร้าง Object และ Datatype Property 1.3.1 การสร้าง Object Properties เป็นการกำหนดคุณสมบัติเพื่อนำไปไช้เชื่อม ความสัมพันธ์ระหว่างคลาส ผู้ใช้สามารถกำหนดความสัมพันธ์ให้คลาสโดยไปที่แท็บ Properties แล้วเลือกแท็บ Object จากนั้นสร้างคุณสมบัติโดยกดปุ่ม (Create Object Properties)


ภาพที่ 142 การเริ่มสร้าง Object Property

ผู้เขียนนำเสนอตัวอย่างการสร้างคุณสมบัติ hasCategory ซึ่งสามารถอธิบาย ด้วยภาพที่ 143 ว่าสามารถนำมาใช้เป็นความสัมพันธ์ระหว่างคลาส Accommodation และคลาส Category และมีอินเวอร์สของคุณสมบัตืคือ isCategoryOf


ภาพที่ 143 ความสัมพันธ์ระหว่างคลาส Accommodation และ Category
จากนั้นเติมรายละเอียดที่หน้าจอฝั่งขวาตามหัวข้อต่างๆ ดังต่อไปนี้
For Property: ใส่ชื่อของคุณสมบัติที่จะกลายเป็น "ความสัมพันธ์" ระหว่างคลาส ในที่นี้ใส่ hasCategory ลงไป ซึ่งชื่อนี้จะไปอยู่ช่องแสดงลำดับชั้นคุณสมบัติใน หน้าต่างด้านซ้ายด้วย

Domain: และ Range ซึ่งที่หัวข้อ Domain: ใส่คลาสที่เป็นโดเมนของ ความสัมพันธ์นั้น และ Range: ใส่คลาสหรือ Expression หรือค่าคงที่ที่เป็นเรนจ์ของความสัมพันธ์ ดังส่วนที่ 1 ของภาพที่ 88 การสรราโดเมนทำได้โดยคดปุ่ม
(Specialise Domain) ระบบจะ ปรากฏหน้าต่างการสร้างโดเมนเฉพาะคลาสขึ้นมาให้ดังภาพที่ 144


ภาพที่ 144 หน้าต่างการสร้างโดเมนเฉพาะคลาส

การสร้างเรนจ์ทำได้โดยกดปุ่ม \& (Specialise Range) ระบบจะปรากฏ หน้าต่างการสร้างเรนจ์เฉพาะคลาสขึ้นมาให้ดังภาพที่ 145 ให้เลือกคลาส Category เมื่อสร้างเสร็จจะ ปรากฎช่องโดเมนและเรนจ์ดังภาพที่ 146


ภาพที่ 145 หน้าต่างการสร้างเรนจ์เฉพาะคลาส


ภาพที่ 146 โดเมนและเรนจ์ที่กำหนดแล้วเสร็จ
การสร้างอินเวอร์สของคุณสมบัติ hasCategory ให้ไปที่ส่วนที่ 4 ของภาพที่ 142 เพื่อสร้างอินเวอร์สของคุณสมบัติ ในกรณีที่มีคลาสนั้นอยู่แล้ว ให้เลือกปุ่ม (Set Inverse Property) โปรแกรมจะแสดงหน้าต่างให้เลือกคุณสมบัตีที่มีอยู่แล้วดังภาพที่ 147 แต่ในกรณีนี้ยังไม่ มีคุณสมบัติ isCategoryOf จึงต้องสร้างคุณสมบัติ้้นมาใหม่โดยกดปุ่ม (create New Inverse Property) ดังภาพที่ 148 ซ้าย จากนั้นโปรแกรมจะปรากฏหน้าต่างดังภาพที่ 149 ให้กรอก รายละเอียด เมื่อกรอกเสร็จจะปรากฏชื่อที่ช่องอินเวอร์สดังภาพ 148 ขวาและภาพที่ 150 เมื่อแล้ว เสร็จ ถ้าหากต้องการลบให้กดปุ่ม (Remove) เพื่อยกเลิกการตั้งค่าคุณสมบัติอินเวอร์สได้


ภาพที่ 147 หน้าต่างให้เลือกคุณสมบัติที่มีอยู่แล้วเพื่อกำหนดอินเวอร์สของคุณสมบัติ


ภาพที่ 148 หน้าต่างสร้างคุณสมบัติอินเวอร์สขึ้นใหม่โดยกดปุ่ม create New Inverse Property


ภาพที่ 149 หน้าต่างกรอกรายละเอียดของคุณสมบัติอินเวอร์ส


ภาพที่ 150 เมื่อสร้างคุณสมบัติของวัตถุแล้วเสร็จ

นอกจากนี้ผู้ใช้สามารถตั้งค่าเรนจ์ของคุณสมบัติให้เป็น OWL Expression ได้ด้วยดังตัวอย่างภาพที่ 151 โดยกดปุ่ม (Specialise Range using OWL expression)

Speciatise Range using owL expression



ภาพที่ 151 การตั้งค่า OWL expression ในเรนจ์
แถบเครื่องมือที่ปรากฏด้านล่างของภาพที่ 152 มีความหมายดังต่อไปนี้
\begin{tabular}{|c|c|c|c|c|}
\hline OWL Element & Symbol & Key & Example & Meaning of example \\
\hline allValuesFrom & V & * & children \({ }^{\text {d }}\) Male & All children must be of type Male \\
\hline someValuesFrom & \(\exists\) & ? & children 3 Lawyer & At least one child must be of type Lawyer \\
\hline has Value & \(\ni\) & \$ & rich \(\ni\) true & The rich property must have the value true \\
\hline cardinality & = & = & children \(=3\) & There must be exactly 3 children \\
\hline minCardinality & 2 & > & children \(\geq 3\) & There must be at least 3 children \\
\hline maxCardinality & \(\leq\) & < & children \(\leq 3\) & There must be at most 3 children \\
\hline complementOf & ᄀ & ! & \(\neg\) Parent & Anything that is not of type Parent \\
\hline intersectionOf & \(\square\) & \& & Human n Male & All Humans that are Male \\
\hline unionOf & \(\sqcup\) & 1 & Doctor \(~\) Lawyer & Anything that is either Doctor or Lawyer \\
\hline enumeration & \{...\} & \{ \} & \{male female\} & The individuals male or female \\
\hline
\end{tabular}

ภาพที่ 152 Protégé-OWL Syntax

จากภาพที่ 151 ในกรณีที่กำหนดให้เรนจ์เป็น OWL Expression นั้นสามารถ ใช้แถบเครื่องมือช่วยในการสร้างประโยคดังตัวอย่างภาพที่ 151 ภาพขวา เมื่อต้องการให้เรนจ์ของ คุณสมบัติมีค่าเป็นคลาส Accommodation และคลาส Attraction นั้นสามารถคลิกที่ เพื่อเลือก คลาส Accommodation จากนั้นคลิกที่ © เพื่อแสดง "And" และสุดท้ายคลิกที่ เพื่อเลือกคลาส Attraction แล้วจึงคลิกที่ปุ่ม (Assign (OK))เพื่อตกลง ดังนั้นในกรณีที่มีประโยคอื่นๆ ก็สามารถ ใช้เครื่องมือเหล่านี้ช่วยได้ในทำนองเดียวกัน ยกเว้นกรณี OR ที่ต้องใช้เครื่องหมาย (ロ) ปรากฎว่า โปรแกรม Protégé ปรากฏเครื่องหมายเตือนดังภาพที่ 153 นั่นคือกรณีที่ต้องการใช้เครื่องหมายยู เนี่ยนในการกำหนดเรนจ์ให้เขียนแยกบรรทัดแทน


ภาพที่ 15 เมเมื่อต้องการใช้เครื่องหม่ายยูี่ยนในกรรกำหนดเรนจ์ให้เขียนแยกบรรทัดแทน

เมื่อคลิก OK เพื่อออกจากคำเตือนประโยค OR ที่ตั้งไว้จะหายไป ต้องเริ่ม เลือกคลาสทีละ 1 คลาส แล้วใส่ทีละบรรทัดแทนเพื่อที่โปรแกรมจะได้สร้างโค้ด OR ได้อย่าง ถูกต้องดังโค้ดด้านล่าง ดังนั้น Expression "UnionOf" ของ Class หรือ OR จึงสามารถใช้ได้ทั้ง โดเมนและเรนจ์ ดังภาพที่ 154 การระบุคลาสมากกว่า 1 คลาสในโดเมนเปรียบเหมือนประโยค \(O R\)


ภาพที 154 ระบุโดเมนหรือเรนจ์แบบคลาสละบรรทัดจะได้โค้ด UnionOf เช่นเดียวกับประโยค \(O R\)


ภาพที่ 155 ตัวอย่างการแสดงรายละเอียดของ Object Property ตามลำดับชั้น
 คุณสมบัติแบบลำดับชั้นประคอบด้วยชั้นซูปเปอร์พร็อพเพอร์ตี้ชั้นคุณสมบัตที่ก่าลังใช้งานและชั้น ที่เป็นสับพร็อพเพอร์ตี้ นอกจากนี้ยังมีปุ่มเครื่องมือสร้างและลบคุณสมบัติดังภาพที่ 155 การเติมคำบรรยายคุณสมบัติสามารถทำได้เช่นเดียวกับการบรรยายคลาส จากภาพที่ 142 ส่วนที่ 2 มุมมองแบบ Annotations ผู้ใช้สามารถสร้างคำบรรยายโดยกดปุ่ม จะ ปรากฏเมนูให้เลือกเติมรายละเอียดดังภาพที่ 156 จากนั้นเลือกคุณสมบัติที่ต้องการเติมแล้วกดปุ่ม OK ปรากฏผลดังภาพที่ 142 ส่วนที่ 2 แต่หากไม่ต้องการเติมให้กดปุ่ม Cancel และหากต้องการดู รายละเอียดรูปแบบทริพเพิลให้กดปุ่ม โ⿴囗⿱一一 จะได้ดังภาพ 157


ภาพที่ 156 หน้าจอเมนูการตั้งค่าการบรรยายคุณสมบัติ


ภาพที่ 157 มุมมองแบบทริพเพิลของคุณสมบัติ
โปรแกรม protégé 3.3.1 มีประเภทของคุณสมบัติหรือความสัมพันธ์ให้ เลือกใช้ส่วนที่ 3 ของภาพที่ 142 คือ Functional, InverseFunctional, Symmetric และ Transitive ซึ่ง คำอธิบายรายละเอียดของทุกคุณสมบัติและตัวอย่างโค้ดอยู่ในภาคผนวก ช ซึ่งการใช้งานผ่าน โปรแกรมเพื่อให้ช่วยสร้างโค้ดดังต้องการทำได้ดังภาพที่ 158 ถึง 162


ภาพที่ 158 การสร้างคุณสมบัติแบบ Functional
คำอธิบายภาพที่ 158 เมื่อต้องการสร้างคุณสมบัติ hasLocation เพื่อใช้เป็น ความสัมพันธ์สำหรับเชื่อมระหว่างคลาส Attraction หรือคลาส Accommodation กับคลาส Location โดยการสร้างคุณสมบัติ hasLocation สร้างโดเมน สร้างเรนจ์และคุณสมบัติอินเวอร์สอิ นจากนั้นจึงติ๊กเครื่องหมายถูกในช่องเช็คบ๊อกซ์ที่ข้อ Funtional เพื่อประกาศว่าสถานที่ตั้งของคลาส Accommodation หรือ Attraction ที่เชื่อมโดย hasLocation ทั้งสถานที่รูปแบบพิกัด กับที่อยู่ทาง ไปรษณีย์สำหรับคลาสเดียวกันแล้วคือสถานที่เดียวกัน


ภาพที่ 159 การสร้างคุณสมบัติแบบ InverseFunctional
คำอธิบายภาพที่ 159 เมื่อต้องการสร้างคุณสมบัติ isLocationOf เพื่อใช้เป็น ความสัมพันธ์สำหรับเชื่อมระหว่างคลาส Location กับคลาส Attraction หรือคลาส Accommodation โดยการสร้างคุณสมบัติ isLocationOf และรายละเอียดโดเมน-เรนจ์ จากนั้นเลือก คลาส hasLocation จาคคลาสที่มีอยู่แล้วเป็นอินเวอร์สจากน้้นจึงติ๊กเครื่องหมายถูกนเช็คบ๊อกซ์ที่ ข้อ InverseFuntional เพื่อประกาศว่าสถานที่ตั้งที่ระบุจากคลาส Location ทังแบบพิกัดและที่อยู่ทาง ไปรษณีย์ของคลาส Accommodation หรือ Attraction ที่เชื่อมโดย isLocationOf คือสถานที่ตั้งของที่ พักแรมหรือสถานที่เดียวกัน


ภาพที่ 160 การสร้างคุณสมบัตัไว้ก่อนเพื่อรอระบุว่าเป็นแบบสมมาตร


ภาพที่ 161 เมื่อกำหนดให้คุณสมบัติเป็นแบบสมมาตรแล้วโปรแกรมจะกำหนดอินเวอร์สให้เอง
คำอธิบายภาพที่ \(160-161\) เมื่อต้องการสร้างคุณสมบัติแบบสมมาตร โดยใช้ Protégé นั้นเริ่มจากภาพที่ 160 ได้ระบุว่าคุณสมบัติ bordersWith มีโดเมนและเรนจ์จากคลาส เดียวกัน จากนั้นเพื่อกำหนดให้เป็นคุณสมบัติแบบสมมาตรให้เลือกติ๊กช่อง Symmetric แล้ว
 คสาสและอินสแตนซ์ของคลาสที่เชื่อมโยงกันด้วยคุณสมบัติ bordersWith จะมีที่ตั้งติดกัน


ภาพที่ 162 กำหนดให้คุณสมบัตเป็นแบบทรานซิทีฟ
คำอธิบายภาพที่ 162 การตั้งค่าคุณสมบัติแบบทรานซิทีฟเพื่อส่งผ่านค่า อินสแตนซ์จากต้นทางสู่ปลายทางว่าเป็นอินสแตนซ์ของคลาสเดียวกัน โดยที่คุณสมบัตันั้น ตลอดจนซูปเปอร์พร็อพเพอร์ตี้ที่เป็นทรานซิทิฟไม่สามารถตั้งเงื่อนไขให้ maxCardinality \(=1\) ได้เลย


ภาพที่ 163 เมื่อคลิกขวาที่คุณสมบัติจะปรากฏตัวช่วยในการสร้างและแปลงค่าคุณสมบัติของวัตถุ การใช้ตัวช่วยเพื่อแปลงค่าคุณสมบัติของวัตถุ (Object Property) ไปเป็น คุณสมบัติประเภทข้อมูล (Data Type Property) โดยการคลิกขวาที่คุณสมบัติของวัตถุที่ต้องการจะ ปรากฎตัวช่วยในการสร้างและแปลงค่าคุณสมบัติของวัตถุ ดังภาพที่ 163 ซึ่งแต่ละเมนูมีความหมาย ดังนี้เมนู ค Create subproperty คือตัวช่วยสร้างสับพร็อพเพอร์ตี้ เหมือนปุ่มด้านบนแท็บ Change property metaclass... คือการปปลี่ยนมตตาคลาสของพร็อพเพอร์ตี้ ซึ่งจะมีหน้าต่างให้ระทุอีกที Convert to owv:Datatypeproperty คือการเปลี่ยนจากคุณสมบัตวัตถุเป็นคุณสมบัติประเภทข้อมูล แทน มีข้อสังเกตว่าเมื่อเปลี่ยนแล้วสัญลักษณ์ที่หน้าชื่อคุณสมบัติจะเปลี่ยนไป ระบบจะคงค่าโดเมน ไว้ให้ แต่ผู้ใช้ต้องเข้าไปใส่รายละเอียดของเรนจ์อีกครั้งและระบุค่าว่าเป็นแบบ Functional หรือไม่

ส่วน Refractor คือการกำหนดค่าตัวแปรใหม่ มีตัวช่วยย่อย 2 แบบคือการ เปลี่ยนชื่อคุณสมบัติข้ามไฟล์แทนด้วยเมนู Rename across files... เมื่อคลิกเข้าไปจะปรากฎ หน้าต่างพร็อมท์ชื่อคุณสมบัติให้อยู่แล้วและมีเมนูให้ใส่ชื่อไฟล์ ส่วนตัวช่วยอีกตัวคือเมนู \(\mathrm{D}_{\mathrm{\zeta}}\) Set deprecation flag หมายถึงเทอมนั้นเป็นศัพท์เก่าที่จะไม่ใช้ในออนโท โลยีเวอร์ชันใหม่ แค่จะ สัมพันธ์กับศัพท์ในเวอร์ชันใหม่ได้อย่างไร ตัวอย่างเช่นหากตั้งค่า hasOpeningHours เป็น Deprecation จะปรากฏสัญลักษณ์ระบุคุณสมบัตินั้นดังนี้ hasOpeningHours D ในขณะเดียวกัน โปรแกรมจะสร้างโค้ด owl: owl:DeprecatedProperty กำกับที่คุณสมบัตินั้นและถ้าต้องการยกเลิก ให้คลิกขวาที่คุณสมบัตินั้น ไปที่ Refractor แล้วเลือกเมนู D_Remove deprecation flag

การเรียกดูรายชื่อของสับพร็อพเพอร์ตี้ สามารถเรียกดูผ่านแท็บพร็อพเพอร์ตี้ ตามขั้นตอนดังภาพที่ 164 ได้ ซึ่งในรายละเอียดจะแสดงชื่อสับพร็อพเพอร์ตี้ โดเมน ซุปเปอร์พร็อพ เพอร์ตี้ และประเภทของคุณสมบัติว่าเป็น Functional หรือไม่


ภาพที่ 164 การเรียกดูรายชื่อของสับพร็อพเพอร์ตี้
1.3.2 การสร้าง Datatype Properties เป็นการกำหนดคุณสมบัติหรือความสัมพันธ์ ระหว่าง โดเมนที่เป็นคลาสและเรนจ์ที่เป็นค่าคงที่ (Literal Value) หรือชนิดข้อมูลตาม XML Schema แล้วนำไปใช้ในการอธิบายข้อมูล Individual หรืออินสแตนซ์แต่ละตัว

ในโปรแกรม Protégé หน้าจอที่ใช้สร้างเป็นดังภาพที่ 165 คือเลือกแท็บ Peperties/จากนั้นเลือกแท็บDataType แล้วจึงเริ่มสร้างโดยกดที่ปุ่ม Create Datatype Property จากน้้นเติมชื่อคุณสมบิติในช่อง For Property แล้วจึงกำหนด โดเมนและะรนจ์ของคุณสมบัติ


ภาพที่ 165 การสร้างคุณสมบัติแบบ DataType
ตัวอย่างภาพที่ 166 คือการสร้างคุณสมบัตื่ืื่อ name และรายละเอียด


ภาพที่ 166 การสร้างคุณสมบัตื่ชื่อ name และรายละเอียดของโดเมนและเรนจ์


ภาพที่ 167 เปลี่ยนเป็นมุมมองทริพเพิลเพื่อดูรายละเอียดของโดเมนและเรนจ์


ภาพที่ 168 ชนิดข้อมูลของเรนจ์
ชนิดข้อมูลของเรนจ์เป็นดังภาพที่ 168 ผู้ใช้สามารถคลิกดร็อปดาวน์ลิสต์ เพื่อเลือกได้ และหากผู้ใช้ต้องการแปลงเป็น Object Property ก็สามารถคลิกขวาได้เช่นเดียวกับการ ใช้ Object Property ภาพที่ 163 เช่นเดียวกัน

\section*{1.4 การสร้าง Individuals}

การสร้าง Individuals เป็นการสร้างอินสแตนซ์ที่มีคุณสมบัติดาต้าไทป์ตามที่ได้ กำหนดมาจากขั้นตอนที่แล้ว ในการสร้างอินสแตนซ์สามารถจัดหน้าจอเพื่อให้เกิดความสะดวกใน การสร้างได้ เนื่องจากการสร้างอินสแตนซ์แต่ละครั้งต้องสร้างในปริมาณมาก การจัดหน้าจอจึง จำเป็น จากภาพที่ 169 การจัดหน้าจอทำในส่วนของแท็บ Forms โดยใช้เม้าท์ลากช่องดาต้าไทป์ของ คลาสที่ต้องการสร้างอินสแตนซ์ไปในตำแหน่งที่ผู้ไช้พอใจแล้วจึงเริ่มกรอกข้อมูลดังภาพที่ 170


ภาพที่ 169 การจัดหน้าจอทำในแท็บ Forms


ภาพที่ 170 การสร้างอินสแตนซ์ตามหน้าจอที่จัดไว้

\section*{1.5 การกำหนดมัลติเพิลเซตของ Necessary \& Sufficient Conditions} จากนิยามที่ 4 ในบทที่ 2 ที่กล่าวถึงการแปลงรูปจาก Conjunctive Query เชิง สัมพันธ์มาเป็นคอนเซปต์ในออนโทโลยีโดยการ Roll-Up คิวรีตามนิยามเพื่อหาคำตอบของเงื่อนไข ที่ตั้งไว้ ซึ่งคิวรีที่ได้จากการ Roll-Up นั้นสามารถนำมาใส่ใน NECESSARY \& SUFFICIENT CONDITIONS ใน โปรแกรม Protégé เพื่อให้ Reasoner มาหาคำตอบได้ ยกตัวอย่างการทดสอบคิวรี ที่ 5 ของ OWL ดังนี้ ขั้นที่ 1 เขียนคิวรีในรูปของ Conjunctive Query
\(\mathrm{Q}(\mathrm{X})<-\quad\) Category-Hotel(X) \(\wedge\) hasLocation(X,A) \hasLocationClassification(X,B) \(\wedge\) hasLocationClassification \((\mathrm{X}, \mathrm{C}) \wedge\) hasRate(X,D) \(\Lambda\) hasAccommodationFacility \((\mathrm{X}, \mathrm{F})\) MasAccommodationFacility \((\mathrm{X}, \mathrm{G})\) \hasLocationAttraction(X,H) \(\wedge \mathrm{A}=\) Petkasem_Road \(\wedge \mathrm{B}=\) Classification_FoodCourse \(\Lambda \mathrm{C}=\) Classification_Shopping \(\Lambda \mathrm{D}=\) Room_rate_1 \(\wedge \mathrm{F}=\) Garden \(\Lambda\) \(\mathrm{G}=\) Beach \(\wedge \mathrm{H}=\) Klai_Kangwon_Huahin_Palace.

ขั้นที่ 2 ใช้นิยามที่ 4 ลดรูปให้เป็น Ontology Concept
\(((\) Hotel \(\Pi(\exists\) hasLocation \(\{\) Petkasem_Road \(\}) \Pi\)
hasRate \(\{\) Room Rate 1\(\}) \Pi\)
hasAccommodationFacility \{Beach \}) II
( \(\exists\) hasAccommodationFacility \(\{\) Thai_Massage \(\}\) ) \(\Pi\)
( \(\exists\) hasLocationAttraction \{ CKlai_Kangwon_Huahin_Palace \}) П
( \(\exists\) hasLocationClassification \{ Classification_FoodCourse \}) ПhasLocationClassification \{ Classification_Shopping \}))
```

ขั้นที่ 3 สร้างเงื่อนไข Ontology Concept ใน Protégé เพื่อนำไปหาคำตอบด้วย Reasoner ได้ผลลัพธ์ดังภาพที่ 173

```
```


# 22:Category

    O Category-Bangalow
    O Category-GuestHouse
    O Category-Hotel
    O Category-Hotel
    O Category-Resort
    - test00
    O- test<1
    - test@2
    - test@3
    O testQ4
    - Attraction

```


ภาพที่ 171 การแปลง Conjunctive Query ให้อยู่ในรูปของ Ontology Concept ใน Protégé

การหาคำตอบในโปรแกรมจะมีแผนภาพดังภาพที่ 172 จากภาพที่ 171 เงื่อนไข ดังกล่าวกำหนดไว้ในคลาส Accommodation ดังนั้นการหาคำตอบจาก Asserted Condition ของ คลาสจะเป็นที่ NECESSARY \& SUFFICIENT CONDITIONS โดยหาคำตอบได้แบบสองทางเมื่อ เทียบกับคำสั่งในภาษา OWL คือ owl:equivalentClass นั่นเอง โดยสามารถดูการใส่รีสตริกชันโดย ละเอียดได้ดังภาคผนวก ง ภาษาเชิงความหมาย การหาคำตอบคือจำนวนอินสแตนซ์ของคลาส Accommodation เป็นดังภาพที่ 173 ผลลัพธ์ของ NECESSARY \& SUFFICIENT CONDITIONS ที่ ได้จาก Reasoner Pellet 2.2.2


NECESSARY \& SUFFICIENT CONDITIONS Conditions

Conditions

ภาพที่ 172 การหาคำตอบในส่วน NECESSARY \& SUFFICIENT CONDITIONS ของ Protégé


ภาพที่ 173 ผลลัพธ์ของ NECESSARY \& SUFFICIENT CONDITIONS ที่ได้จาก Reasoner

\section*{ชั้นของคลาสออนโทโลยี กรณีศึกษา การท่องเที่ยวอำเภอหัวหิน}

ภาคผนวก ฉ นี้ประกอบด้วยการอธิบายภาพรวมของคลาสออนโทโลยีทั้งหมด รายละเอียดของคลาสในชั้นต่างๆ ตัวอย่างประโยคที่ใช้งาน

\section*{1. รายละเอียดออนโทโลยีของคลาสในชั้นต่างๆ}
1.1 คลาส Accommodation


ภาพที่ 174 ออนโทโลยีของคลาส Accommodation

ตารางที่ 40 รายละเอียดของคลาส Accommodation
\begin{tabular}{|l|l|}
\hline ชื่อคลาส & Accommodation \\
\hline คำอธิบาย & คลาสแสดงคอนเซปต์ที่พักแรมในอำเภอหัวหิน \\
\hline ซุปเปอร์คลาส & Owl:Thing \\
\hline อินสแตนซ์โดยตรง & ไม่มี \\
\hline \begin{tabular}{l} 
สับคลาสของ
\end{tabular} & \begin{tabular}{l} 
Hotel, Resort, Others, Bangalow, GuestHouse, Lodge, Chalet, \\
Accommodation
\end{tabular} \\
\hline
\end{tabular}

ตารางที่
41 รายละเอียดของคุณสมบัติของคลาส Accommodation

\begin{tabular}{|l|l|l|}
\hline ชื่อสับคลาส & คำอธิบาย & เงื่อนไขระดับ Necessary \\
\hline Bangalow & ที่พักประเภทบังกะโล & (Э)(hasCategory has Category_Bangalow) \\
\hline BedAndBreakfast & \begin{tabular}{l} 
ที่พักประเภทห้องพักพร้อม \\
บริการอาหาร
\end{tabular} & \begin{tabular}{l} 
(Э)(hasCategory has Category_BedAnd \\
Breakfast)
\end{tabular} \\
\hline Camp & ที่พักประเภทแคมป์ & (Э)(hasCategory has Category_Camp) \\
\hline Chalet & ที่พักประเภทชาเลต์ & (Э)(hasCategory has Category_Chalet) \\
\hline Lodge & ที่พักประเภทลอดจ์ & (Э)(hasCategory has Category_Lodge) \\
\hline Inn & ที่พักประเภทอินน์ & (Э)(hasCategory has Category_Inn) \\
\hline Guesthouse & ที่พักประเภทเกสต์เฮาส์ & (Э)(hasCategory has Category_Guesthouse) \\
\hline Hostel & ที่พักประเภทฮอสเทล & (Э)(hasCategory has Category_Hostel) \\
\hline Hotel & ที่พักประเภทโรงแรม & (Э)(hasCategory has Category_Hotel) \\
\hline Others & ที่พักประเภทอื่นๆ & (Э)(hasCategory has Category_Others) \\
\hline Resort & ที่พักประเภทรีสอร์ท & (Э) (hasCategory has Category_Resort) \\
\hline
\end{tabular}
1.2 คลาส Activity


ภาพที่ 175 ออนโทโลยีของคลาส Activity

ตารางที่ 43 รายละเอียดของคลาส Activity
\begin{tabular}{|l|l|}
\hline ชื่อคลาส & Activity \\
\hline คำอธิบาย & คลาสแสดงคอนเซปต์ของกิจกรรมการท่องเที่ยวในอำเภอหัวหิน \\
\hline ซุปเปอร์คลาส & Owl:Thing \\
\hline อินสแตนซ์โดยตรง & ไม่มี \\
\hline สับคลาสของ Activity & Adventure, Recreation, Sport, Training, Wellbeing \\
\hline สับคลาสของ Adventure & ElephantTrekking, Paintballing,Trekking \\
\hline สับคลาสของ Recreation & Dancing, Shopping \\
\hline สับคลาสของ Sport & Biking, Golf, Jogging, Marathon, MuayThai, Triathlete, \\
WaterSports \\
\hline สับคลาสของ Training & MuayThaiTraining, PilotTraining \\
\hline สับคลาสของ Wellbeing & Fitness, Massage,Spa \\
\hline
\end{tabular}

ตารางที่ 44 รายละเอียดของคุณสมบัติของคลาส Activity
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & Cadinality \\
\hline canBeDoneAt & สถานที่ประกอบกิจกรรม & Infrastructure & \(0:^{*}\) \\
\hline has Activity & มีกิจกรรม & Activity & \(0:^{*}\) \\
\hline isActivityOf & เป็นกิจกรรมของ & \begin{tabular}{l} 
Location \\
Site \(\bigsqcup\) \\
Activity
\end{tabular} & \(0:^{*}\) \\
\hline Name & ชื่อกิจกรรม & \(0: 1\) & \(0: 1\) \\
\hline
\end{tabular}
1.3 คลาส Attraction


ภาพที่ 176 ออนโทโลยีของคลาส Attraction

ตารางที่ 45 รายละเอียดของคลาส Attraction
\begin{tabular}{|l|l|}
\hline ชื่อคลาส & Attraction \\
\hline คำอธิบาย & แหล่งท่องเที่ยวที่น่าสนใจ \\
\hline ซุปเปอร์คลาส & Owl:Thing \\
\hline อินสแตนซ์โดยตรง & ไม่มี \\
\hline สับคลาสของ Attraction & \begin{tabular}{l} 
Cultural,Entertainment,FoodAndDining,LocalActivity,Markets,N \\
atural,Religion,Sightseeing
\end{tabular} \\
\hline สับคลาสของ Entertainment & Karaokes, Pubs, Theaters \\
\hline สับคลาสของ Religion & Churches, Shrines, Temples \\
\hline
\end{tabular}

ตารางที่ 45 (ต่อ)
\begin{tabular}{|l|l|}
\hline ชื่อคลาส & Attraction \\
\hline สับคลาสของ Sightseeing & ArtGalleries, Beach, Caves,GuidedTours,Palaces,WaterFall \\
\hline
\end{tabular}

ตารางที่ 46 รายละเอียดของคุณสมบัติของคลาส Attraction
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & Cadinality \\
\hline hasLocation & สถานที่ตั้งของแหล่งท่องเที่ยว & Location & \(0:^{*}\) \\
\hline averagePrice & ราคาเฉลี่ย & String & \(0:^{*}\) \\
\hline lastEntryTime & เวลา & Time & \(0:^{*}\) \\
\hline
\end{tabular}

\section*{1.4 คลาส ContactData}


ภาพที่ 177 ออนโทโลยีของคลาส ContactData
ตารางที่ 47 รายละเอียดของคลาส ContactData
\begin{tabular}{|l|l|}
\hline ชื่อคลาส & ContactData \\
\hline คำอธิบาย & คลาสเก็บช่องทางติดต่อของสถานที่ของนักท่องเที่ยว \\
\hline ซุปเปอร์คลาส & Owl:Thing \\
\hline อินสแตนซ์โดยตรง & ไม่มี \\
\hline สับคลาสของ ContactData & ไม่มี \\
\hline
\end{tabular}

ตารางที่ 48 รายละเอียดของคุณสมบัติของคลาส ContactData
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & Cadinality \\
\hline isContactDataOf & เป็นที่ติดต่อของ & \begin{tabular}{l} 
Infrastructure \(\bigsqcup_{\text {Accommodation }}\) ปvent0
\end{tabular} & \(0: 1\) \\
\hline
\end{tabular}

ตารางที่ 48 (ต่อ)
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & Cadinality \\
\hline eMail & ที่อยู่อีเมล์ & String & \(00^{*}\) \\
\hline faxNumber & หมายเลขแฟกซ์ & String & \(0:^{*}\) \\
\hline telephoneNumber & หมายเลขโทรศัพท์ & String & \(0:^{*}\) \\
\hline Website & เว็บไซต์ & String & \(00^{*}\) \\
\hline
\end{tabular}
1.5 คลาส Event


ภาพที่ 178 ออนโทโลยีของคลาส Event

ตารางที่ 49 รายละเอียดของคลาส Event
\begin{tabular}{|l|l|}
\hline ชื่อคลาส & Event \\
\hline คำอธิบาย & เหตุการณ์เกี่ยวกับการท่องเที่ยวที่เกิดขึ้นในท้องถิ่น \\
\hline ซุปเปอร์คลาส & Owl:Thing \\
\hline อินสแตนซ์โดยตรง & ไม่มี \\
\hline สับคลาสของคลาส Event & Ceremony, Competition, Exhibition, Festival \\
\hline สับคลาสของ Competition & Meet,Match,Contest,Game,Tournament \\
\hline
\end{tabular}

ตารางที่ 50 รายละเอียดของคุณสมบัติของคลาส Event
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & Cadinality \\
\hline hasContactData & ที่ติดต่อสอบถาม & ContactData & \(0: 1\) \\
\hline hasGPSCoordinates & มีพิกัด & GPSCoordinates & \(0: 1\) \\
\hline hasPostalAddress & มีที่ตั้งทางไปรษณีย์ & PostalAddress & \(0: 1\) \\
\hline
\end{tabular}

ตารางที่ 50 (ต่อ)
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & Cadinality \\
\hline hasTimePeriod & มีช่วงเวลาของเหตุการณ์ & TimePeriod & \(0:^{*}\) \\
\hline Name & ชื่อของเหตุการณ์ & String & \(0: 1\) \\
\hline Comment & หมายเหตุของเหตุการณ์ & String & \(0:^{*}\) \\
\hline Description & คำบรรยายเหตุการณ์ & String & \(0:^{*}\) \\
\hline Duration & ระยะเวลาของเหตุการณ์ & duration & \(0: 1\) \\
\hline
\end{tabular}
1.6 คลาส Facility


ภาพที่ 179 ออนโทโลยีของคลาส Facility

ตารางที่ 51 รายละเอียดของคลาส Facility
\begin{tabular}{|l|l|}
\hline ชื่อคลาส & Facility \\
\hline คำอธิบาย & สิ่งอำนวยความสะดวกในที่พักแรม \\
\hline ซุปเปอร์คลาส & Owl:Thing \\
\hline อินสแตนซ์โดยตรง & ไม่มี \\
\hline สับคลาสของ Facility & \begin{tabular}{l} 
AirCondition, BedFacility, DVDplayer, FaxMachine, \\
FitnessCentre, Garden, HourseRiding, InternetAccess, \\
Restaurant, RoomFacility, SwimmingPool, Telephone, TVSet
\end{tabular} \\
\hline สับคลาสของ BedFacility & DoubleBed, ExtraBed, SingleBed \\
\hline สับคลาสของRoomFacility & ConferenceRoom, Guestroom \\
\hline
\end{tabular}

ตารางที่ 52 รายละเอียดของคุณสมบัติของคลาส Facility
\begin{tabular}{|c|c|c|c|c|}
\hline & ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & Cadinality \\
\hline & isFacilityOf & เป็นสิ่งอำนวยความ & Accommodation & 0:* \\
\hline \multirow[t]{5}{*}{} &  & สะดวกของที่พักแรมใด & D (a D T T &  \\
\hline & facilitySubName & ชื่ออี่นของสิ่งอำนวย ความสะดวก & String & \begin{tabular}{l}
( \(\geq\) )facilitySubName min 1 \\
( \(\leq\) )facilitySubName max 5
\end{tabular} \\
\hline & Id & ระบุชื่อคีย์ของสิ่งอำนวย ความสะดวก & String & (=)id exactly 1 \\
\hline & Description & คำบรรยายสิ่งอำนวย ความสะดวก & String & 0:* \\
\hline & Name & ชื่อของสิ่งอำนวยความ สะดวก & String & 0:1 \\
\hline
\end{tabular}

ตารางที่ 53 รายละเอียดของคุณสมบัติของคลาส BedFacility นอกเหนือจากคลาส Facility
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & Cadinality \\
\hline Description & \begin{tabular}{l} 
คำบรรยายสิ่งอำนวยความ \\
สะดวก
\end{tabular} & String & (=)description exactly 1 \\
\hline numPeople & จำนวนคน & String & (=)numPeople exactly 1 \\
\hline Quantity & จำนวนเตียง & Integer & \(0: 1\) \\
\hline
\end{tabular}

ตารางที่ 54 รายละเอียดของคุณสมบัติของคลาส DoubleBed นอกเหนือจากคลาส Facility
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & เงื่อนไข/Cadinality \\
\hline Quantity & จำนวนเตียง & Integer & \((\geq)\) quantity min 1 \\
\hline
\end{tabular}

ตารางที่ 55 รายละเอียดของคุณสมบัติของคลาส SingleBed นอกเหนือจากคลาส Facility
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & เงื่อนไข/Cadinality \\
\hline Quantity & จำนวนเตียง & Integer & (=)quantity exactly 1 \\
\hline
\end{tabular}

ตารางที่ 56 รายละเอียดของคุณสมบัติของคลาส RoomFacility นอกเหนือจากคลาส Facility
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & Cadinality \\
\hline isRoomOf & เป็นห้องของที่พักแรมใด & Accommodation & \(0: *\) \\
\hline airCondition & มีเครื่องปรับอากาศหรือไม่ & Boolean & \(0: 1\) \\
\hline Area & มีพื้นที่เท่าไร & Float & \(0: 1\) \\
\hline faxMachine & มีเครื่องแฟกซ์หรือไม่ & Boolean & \(0: 1\) \\
\hline internetAccess & มีบริการอินเตอร์เน็ตหรือไม่ & Boolean & \(0: 1\) \\
\hline smokingAllowed & ดีบิเวณใหสสบบุหรี่หรือไม่ & Boolean & \(0: 1\) \\
\hline Telephone & มีเครื่องโทรศัพท์หรือไม่ & Boolean & \(0: 1\) \\
\hline VCR & มี videocassette recorder หรือไม่ & Boolean & \(0: 1\) \\
\hline wiredConnection & มี Wired Connection หรือไม่ & Boolean & \(0: 1\) \\
\hline wirelessConnection & มี Wireless Connection หรือไม่ & Boolean & \(0: 1\) \\
\hline
\end{tabular}

ตารางที่ 57 รายละเอียดของคุณสมบัติของคลาส ConnectionRoom นอกเหนือจาก RoomFacility
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & Cadinality \\
\hline audioEquipment & มีเครื่องเสียงหรือไม่ & Boolean & \(0: 1\) \\
\hline litByNaturalDaylight & มีแสงธรรมชาติหรือไม่ & Boolean & \(0: 1\) \\
\hline Screen & มีจอเท่าไร & Boolean & \(0: 1\) \\
\hline slideProjector & มีเครื่องโปรเจคเตอร์ฉายสไลด์หรือไม่ & Boolean & \(0: 1\) \\
\hline Stage & มีเวทีหรือไม่ & Boolean & \(0: 1\) \\
\hline videoConferenceSystem & มีระบบประชุมผ่านวิดีโอหรือไม่ & Boolean & \(0: 1\) \\
\hline videoProjector & มีเครื่องโปรเจคเตอร์ฉายวิดีโอหรือไม่ & Boolean & \(0: 1\) \\
\hline
\end{tabular}

ตารางที่ ที่ 58 รายละเอียดของคุณสมบัติของคลาส GuestRoom นอกเหนือจากคลาส RoomFacility

1.7 คลาส Location และ LocationType

คลาส Location นำเสนอสถานที่ตั้งของที่พักแรม สถานที่ท่องเที่ยว กิจกรรมและ เหตุการณ์ ซึ่งแบ่งเป็นสองประเภทคือ ที่ตั้งตามพิกัดภูมิศาสตร์ และที่ตั้งตามที่อยู่ไปรษณีย์ โดยที่ตั้ง ตามที่อยู่ไปรษณีย์นี้จะมีความสัมพันธ์กับคลาส LocationType ซึ่งเป็นสับคลาสของคลาส Subsidiary เพื่อเรียกใช้ข้อมูล

คลาส LocationType นำเสนอข้อมูลตามประเภทของที่อยู่ตามไปรษ ณี ย์ ประกอบด้วย เลขที่บ้าน หมู่ ซอย ถนน ชุมชน ตำบล อำเภอ จังหวัด รหัสไปรษณีย์และชื่อประเทศ


ภาพที่ 180 ออนโทโลยีของคลาส Location และ LocationType


ภาพที่ 181 ภาพจากโปรแกรม Jambalaya แสดงคลาส สับคลาสและอินสแตนซ์ของ Location Type

ตารางที่ 59 รายละเอียดของคลาส Location
\begin{tabular}{|l|l|}
\hline ชื่อคลาส & Location \\
\hline คำอธิบาย & \begin{tabular}{l} 
สถานที่ เช่นตามพิกัดภูมิศาสตร์ ตำบล อำเภอ จังหวัด โดยสถานที่ \\
ใหญู่จะประกอบด้วยสถานที่เล็กกว่า
\end{tabular} \\
\hline ซุปเปอร์คลาส & Owl:Thing \\
\hline อินสแตนซ์โดยตรง & ไม่มี \\
\hline สับคลาส & GPSCoordinates, PostalAddress \\
\hline
\end{tabular}

ตารางที่ 60 รายละเอียดของคุณสมบัติของคลาส Location
\(\left.\begin{array}{|l|l|l|l|}\hline \text { ชื่อคุณสมบัต } & \text { คำอธิบาย } & \text { เรนจ์/ประเภท } & \text { Cadinality } \\ \hline \text { hasActivity } & \text { มีกิจกรรมใดเกิดขึ้น } & \text { Activity } & 0: * \\ \hline \text { hasLocation } & \text { อยู่ในสถานที่ใด } & & \text { Location }\end{array}\right]\)

ตารางที่ 61 รายละเอียดคุณสมบัติของคลาส GPSCoordinates นอกเหนือที่ได้จากคลาส Location
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & Cadinality \\
\hline isGPSCoordinatesOf & เป็นพิกัดของ & \begin{tabular}{l} 
Infrastructure \(\downarrow\) \\
Accommodation \(\downarrow\) \\
Event
\end{tabular} & \(0:\) * \\
\hline Latitude & ค่าละติจูด & Float & \(0: 1\) \\
\hline Longitude & ค่าลองจิจูด & Float & \(0: 1\) \\
\hline
\end{tabular}

ตารางที่ 62 รายละเอียดคุณสมบัติของคลาส PostalAddress นอกเหนือที่ได้จากคลาส Location
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & เงื่อนไข/Cadinality \\
\hline hasLocationType & \begin{tabular}{l} 
ประกอบด้วยที่อยู่ย่อย \\
ใด
\end{tabular} & locationType & \begin{tabular}{l}
\((\exists)\) hasLocationType \\
some LocationType, \\
\(0: *\)
\end{tabular} \\
\hline isPostalAddressOf & \begin{tabular}{l} 
เป็นที่อยู่ทางไปรษณีย์ \\
ของสถานที่ใด
\end{tabular} & \begin{tabular}{l} 
Infrastructure \(ป\) \\
Accommodation \(ป\) \\
Event
\end{tabular} & \(0: *\) \\
\hline
\end{tabular}

ตารางที่ 63 รายละเอียดของคลาส LocationType
\begin{tabular}{|l|l|}
\hline ชื่อคลาส & Location \\
\hline คำอธิบาย & ประเภทของสถานที่ \\
\hline ซึ่เอร์คลาส & OwN:Thing \\
\hline อินสแตน์ซดยตรง & \begin{tabular}{l} 
Amphoe, Community, Country, HouseNumber, Moo, Province, \\
Road, Soi, Tumbon, Zipcode
\end{tabular} \\
\hline สับคลาส &
\end{tabular}

ตารางที่ 64 รายละเอียดของคุณสมบัติของคลาส LocationType
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & Cadinality \\
\hline hasLocality & \begin{tabular}{l} 
มีรายละเอียดที่อยู่ย่อย \\
ใดบ้าง
\end{tabular} & LocationType & \(00^{*}\) \\
\hline isInLocation & \begin{tabular}{l} 
ต้องระบุว่าอยู่ในที่ตั้งใด
\end{tabular} & \begin{tabular}{l} 
Location \\
LocationType
\end{tabular} & \(0: 1\) \\
\hline isLocalityOf & \begin{tabular}{l} 
เป็นสถานที่ย่อยของ \\
สถานที่ใด
\end{tabular} & LocationType & \(0:^{*}\) \\
\hline isLocationTypedOf & \begin{tabular}{l} 
เป็นที่อยู่ย่อยของที่อยู่ทาง \\
ไปรษณีย์ใด
\end{tabular} & PostalAddress & \(0:^{*}\) \\
\hline
\end{tabular}

ตารางที่ 65 เงื่อนไขของสับคลาสของคลาส LocationType
\begin{tabular}{|l|l|l|l|}
\hline ชื่อสับคลาส & คำอธิบาย & ระดับ & เงื่อนไข \\
\hline Soi & ระบุซอย & Necessary & \((\forall)\) isInLocation only Road \\
\hline Community & ระบุชุมชน & \begin{tabular}{l} 
Necessary \\
\& Sufficient
\end{tabular} & \begin{tabular}{l}
\((\forall)\) isLocalityOf only \\
Tumbon
\end{tabular} \\
\hline Tumbon & ระบุตำบล & & \begin{tabular}{l}
\((\forall)\) isLocalityOf only \\
Amphoe
\end{tabular} \\
\hline Amphoe & ระบุอำเภอ & \begin{tabular}{l}
\((\forall)\) isLocalityOf only \\
Province
\end{tabular} \\
\hline Province & ระบุจังหวัด & & \begin{tabular}{l}
\((\forall)\) isInLocation only \\
Country
\end{tabular} \\
\hline
\end{tabular}
1.8 คลาส OtherCriteria

\begin{tabular}{|l|l|}
\hline ชื่อคลาส & OtherCriteria \\
\hline คำอธิบาย & เป้าหมายในการท่องเที่ยวอื่นๆ \\
\hline ซุปเปอร์คลาส & Owl:Thing \\
\hline อินสแตนซ์โดยตรง & ไม่มี \\
\hline สับคลาส & ไม่มี \\
\hline
\end{tabular}

ตารางที่ 67 รายละเอียดของคุณสมบัติของคลาส OtherCriteria
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & Cadinality \\
\hline Comment & ระบุหมายเหตุเป้าหมาย & String & \(0:^{*}\) \\
\hline Description & ระบุรายละเอียดเป้าหมาย & String & \(0: *\) \\
\hline Name & ระบุชื่อเป้าหมาย & String & \(0: 1\) \\
\hline
\end{tabular}

\section*{1.9 คลาส Period}


ภาพที่ 183 ออนโทโลยีของคลาส Period
\begin{tabular}{l}
\(\qquad\)\begin{tabular}{|l|l|}
\hline ชื่อคลาส & Period \\
\hline คำอธิบาย & ระยะเวลาที่เกี่ยวข้องกับขอบเขตการท่องเที่ยว \\
\hline ซุปเปอร์คลาส & Owl:Thing \\
\hline อินสแตนซ์โดยตรง & ไม่มี \\
\hline สับคลาส & \begin{tabular}{l} 
Season, Month, Weekday, OpeningHours, \\
DateTimePeriod, DatePeriod, TimePeriod
\end{tabular} \\
\hline อินสแตนซ์ของ Month & \begin{tabular}{l} 
January, February, March, April, May, June, July, August, \\
September, October, November, December
\end{tabular} \\
\hline & \begin{tabular}{l} 
Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, \\
Saturday
\end{tabular} \\
\hline อินสแตนซ์ของ Weekday
\end{tabular} \\
\hline
\end{tabular}

สำหรับคลาส Period นั้นถือเป็นคอนเวปต์รวมคลาสเกี่ยวกับเวลา ดังนั้น คุณสมบัติของคลาสจึงระบุไปที่แต่ละสับคลาสของคลาส Period เป็นหลัก ประกอบด้วยคลาส Season คลาส OpeningHours คลาส DateTimePeriod คลาส DatePeriod และคลาส TimePeriod โดยแต่ละคลาสจะมีคำจำกัดความที่แน่นอน

ตารางที่ 69 รายละเอียดของคุณสมบัติของคลาส Season
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & เงื่อนไข/Cadinality \\
\hline hasDatePeriod & ประกอบด้วยช่วงวัน & DatePeriod & \(0:^{*}\) \\
\hline seasonNumber & ลำดับของฤดูกาล & Integer & ค่าคงที่ \(=1,2,3\) \\
\hline startDate & ระบุวันเริ่ม Season & Date & \(0:^{*}\) \\
\hline endDate & ระบุวันสิ้นสุด Season & Date & \(0:^{*}\) \\
\hline
\end{tabular}

ตดูกาลของอำเภอหัวหินที่อยู่ในเขตร้อนลักษณะภูมิอากาศจะถูกควบคุมโดยการ หมุนวียยนของกระแสอากาศประจำถดูกาล (เทศบาลเมืองหัวนิน 2550 ) โดยแบ่งดดูกาลได้ดังนี้
- ถดูร้อน กลางเดือนกุมภาพันธ์ - กลางเดือนพจษภาคม
- ฤดูฮน กลางเดือนพฤษภาคม - กลางเดือนตุลาคม
- ถดูหนาว กลางเดือนตุลาคม - กลางเดือนกุมภาพันธ์

ตารางที่ 70 รายละะอียดของคุณสมบัติของคลาส OpeningHours
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์ & เงือนไข / Cadinality \\
\hline hasContent & ประกอบด้วยข้อความ & Event & \((=)\) hasContent exactly 1 \\
\hline hasPeriod & \begin{tabular}{ll} 
ประกอบด้วยช่วงเวลา & Period \\
\((\forall)(\) DatePeriod or DateTimePeriod) \\
\((\exists)\) (DatePeriod or DateTimePeriod)
\end{tabular} \\
\hline isInSite & \begin{tabular}{l} 
เวลาเริ่มเหตุการณ์ของ \\
สถานที่ใด
\end{tabular} & Site & \((=)\) isInSite exactly 1 \\
\hline
\end{tabular}

ตารางที่ 71 รายละเอียดของคุณสมบัติของคลาส DateTimePeriod
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & เงื่อนไข/Cadinality \\
\hline hasSeason & ประกอบด้วยฤดูกาล & DatePeriod & hasSeason \(\geq 0\) \\
\hline hasDatePeriod & ประกอบด้วยช่วงวัน & DatePeriod & hasDatePeriod \(\geq 1\) \\
\hline hasTimePeriod & ประกอบด้วยช่วงเวลา & TimePeriod & hasTimePeriod \(\geq 1\) \\
\hline
\end{tabular}

ตารางที่ 72 รายละเอียดของคุณสมบัติของคลาส DatePeriod
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & เงื่อนไข/Cadinality \\
\hline hasSeason & ประกอบด้วยฤดูกาล & Season & \(0:^{*}\) \\
\hline hasMonth & ประกอบด้วยเดือน & Month & \(0:^{*}\) \\
\hline hasWeekday & ประกอบด้วยวัน & Weekday & \(00^{*}\) \\
\hline startDate & ระบุวันเริ่ม DatePeriod & Date & \(0:^{*}\) \\
\hline endDate & ระบุวันสิ้นสุด DatePeriod & Date & \(0:^{*}\) \\
\hline
\end{tabular}

ตารางที่ 73 รายละเอียดของคุณสมบัติของคลาส TimePeriod
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & เงื่อนไข/Cadinality \\
\hline StartTime & ระบุเวลาเริ่ม TimePeriod & Date & \(0:^{*}\) \\
\hline endTime & ระบุเวลาสิ้นสุด TimePeriod & Date & \(0:^{*}\) \\
\hline
\end{tabular}


ภาพที่ 184 ออนโทโลยีของคลาส Site


ภาพที่ 185 ออนโทโลยีของคลาส Site ที่แจกแจงสมาชิกของสับคลาส Infrastructure

คำอธิบายภาพที่ 184 ออนโทโลยีของคลาส Site ประกอบด้วยสับคลาส Infrastructure สับคลาส WellbeingSite และ RecreationSite ที่มีสมาชิกคือ Safari และ Sightseeing ซึ่งคลาส Sightseeing เป็นสมาชิกของคลาส Attraction ด้วย ต่อมาในภาพที่ 185 แสดงถึงคลาส Site ที่มีคลาส Infrastructure เป็นสมาชิกพร้อมกับสับคลาสของคลาส Infrastructure

ตารางที่ 74 รายละเอียดของคลาส Site
\begin{tabular}{|c|c|}
\hline ชื่อคลาส & Site \\
\hline คำอธิบาย & สถานที่ทั่วไปของอำเภอหัวหิน \\
\hline ซุปเปอร์คลาส & Owl:Thing \\
\hline อินสแตนซ์โดยตรง & ไม่มี \\
\hline สับคลาสของคลาส Site & Infrastructure, RecreationalSite, WellbeingSite \\
\hline สับคลาสของคลาส Infrastructure & \begin{tabular}{l}
AdministrationInfrastructure, \\
EntertainmentInfrastructure, \\
ExhibitionInfrastructure, \\
HealthInfrastructure, PublicInfrastructure, \\
ShoppingInfrastructure, \\
SportsInfrastructure, \\
TerminalInfrastructure
\end{tabular} \\
\hline สับคลาสของคลาส AdministrationInfrastructure & FireStation, Manicipality, PoliceOffice \\
\hline สับคลาสของคลาส EntertainmentInfrastructure & Cinema, Theatre \\
\hline สับคลาสของคลาส HealthInfrastructure & Clinic, Dentist, Hospital, Pharmacy \\
\hline สับคลาสของคลาส PublicInfrastructure & Bank, CarParking, GasStation, Library, PostOffice \\
\hline สับคลาสของคลาส ShoppingInfrastructure & Mall, Shop \\
\hline สับคลาสของคลาส SportsInfrastructure & GolfCourse, Gym, Stadium, TennisCourt \\
\hline สับคลาสของคลาส TerminalInfrastructure & \begin{tabular}{l}
Airport, BusStation, CoachStation, \\
Seaport, TrainStation
\end{tabular} \\
\hline สับคลาสของคลาส RecreationSite & Safari, Sightseeing \\
\hline สับคลาสของคลาส Sightseeing & \begin{tabular}{l}
ArtGalleries, Beach, \\
Caves,GuidedTours,Palaces,WaterFall
\end{tabular} \\
\hline
\end{tabular}

ตารางที่ 75 รายละเอียดของคุณสมบัติของคลาส Site
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & เงื่อนไข/Cadinality \\
\hline has Activity & มีกิจกรรมเกิดขึ้น & Activity & \(0:^{*}\) \\
\hline hasContactData & มีข้อมูลติดต่อ & ContactData & \(0: 1\) \\
\hline hasEvent & มีเหตุการณ์เกิดขึ้น & OpeningHours & \(0:^{*}\) \\
\hline hasOpeningHours & เวลาเริ่มเปิดสถานที่นั้น & OpeningHours & \begin{tabular}{l}
\((\forall)\) (hasOpeningHours \\
only DateTimePeriod)
\end{tabular} \\
\hline Comment & หมายเหตุของสถานที่ & String & \(0:^{*}\) \\
\hline Description & คำอธิบายของสถานที่ & String & \(0: *\) \\
\hline Name & ชื่อของสถานที่ & String & \(0: 1\) \\
\hline
\end{tabular}

ตารางที่ 76 รายละเอียดของคุณสมบัติของคลาส Infrastructure

1.11 คลาส Subsidiary


ภาพที่ 186 ออนโทโลยีของคลาส Subsidiary

ตารางที่ 77 รายละเอียดของคลาส Subsidiary
\begin{tabular}{|c|c|}
\hline ชื่อคลาส & Subsidiary \\
\hline ซุปเปอร์คลาส & Owl:Thing \\
\hline คำอธิบาย & เกี่ยวกับข้อมูลปลีกย่อย \\
\hline อินสแตนซ์โดยตรง & ไม่มี \\
\hline สับคลาสของ Subsidiary & AccomodationPriceRate, AccomodationRating, Category, Currency,Language, Price \\
\hline \begin{tabular}{l}
สับคลาสของ \\
AccomodationPriceRate
\end{tabular} & Price-Rate-1, Price-Rate-2, Price-Rate-3, Price-Rate-4, Price-Rate-5, Price-Rate-Unknown \\
\hline สับคลาสของ Price & AcommodationPrice \\
\hline \begin{tabular}{l}
อินสแตนซ์ของ \\
AccomodationRating
\end{tabular} & OneStar, TwoStar, Threestar, FourStar, DontKnowStar, FiveStar \\
\hline อินสแตนซ์ของ Category & Category_Hotel, Category_Bangalow, Category_Resort, Category Guesthouse, Category BedAndBreakfast, Category_Cottage, Category_Hostel, Category_Camp, Category_Chalet \\
\hline อินสแตนซ์ของ Currency & USD, GBP, EUR, JPY, HKD, MYR, SGD, BND, PHP, IDR, INR, CHF, AUD, AZD, PKR, CAD, CNY, NOK,THB \\
\hline
\end{tabular}

ตารางที่ 78 รายละเอียดของคุณสมบัติของคลาส Subsidiary
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & เงื่อนไข/Cadinality \\
\hline Name & ชื่อ & String & \(0: 1\) \\
\hline
\end{tabular}

ตารางที่ 79 รายละเอียดของคุณสมบัติของคลาส AccomodationPriceRate
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & เงื่อนไข/Cadinality \\
\hline hasMaxPrice & ระบุราคาสูงที่สุด & Price & \(0: 1,(\geq)\) hasMaxPrice min 1 \\
\hline hasMinPrice & ระบุราคาต่ำที่สุด & Price & \(0: 1,(\geq)\) hasMinPrice min 1 \\
\hline
\end{tabular}

ตารางที่ 80 รายละเอียดของคุณสมบัติของคลาส Category
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & เงื่อนไข/Cadinality \\
\hline isCategoryOf & เป็นประเภทของ & Accommodation & \(0: *\) \\
\hline
\end{tabular}

ตารางที่ 81 รายละเอียดของคุณสมบัติของคลาส Currency
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & เงื่อนไข/Cadinality \\
\hline currencyCode & ตัวย่อสกุลเงิน & String & \(0: 1\) \\
\hline exchangeRate & อัตราแลกเปลี่ยนตามสกุลเงิน & Float & \(0: 1\) \\
\hline
\end{tabular}

ตารางที่ 82 รายละเอียดของคุณสมบัติของคลาส Language
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & เงื่อนไข/Cadinality \\
\hline languageCode & ตัวย่อภาษาตาม RFC 3066 & String & \(0: 1\) \\
\hline
\end{tabular}

ตารางที่ 83 รายละเอียดองคุณสมบัตของคลาส Price
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & เงื่อนไข/Cadinality \\
\hline hasCurrency & มีสกุลเงินใด & String & \(0: 1,(=)\) hasCurrency exactly 1 \\
\hline priceValue & มูลค่าเงิน & Float & \(0: 1\) \\
\hline
\end{tabular}
1.12 คลาส Transportation


ภาพที่ 187 ออนโทโลยีของคลาส Transportation

ตารางที่ 84 รายละเอียดของคลาส Transportation
\begin{tabular}{|l|l|}
\hline ชื่อคลาส & Transportation \\
\hline \begin{tabular}{l} 
ซุปเปอร์คลาส
\end{tabular} & Owl:Thing \\
\hline คำอธิบาย & ขนส่งมวลชน \\
\hline อินสแตนซ์โดยตรง & ไม่มี \\
\hline \begin{tabular}{l} 
สับคลาสของคลาส \\
Transportatio
\end{tabular} & \begin{tabular}{l} 
Bicycles, Bus, MiniBus, MotorcycleTaxi, Train, Tricycle, \\
TukTuks
\end{tabular} \\
\hline
\end{tabular}

ตารางที่ 85 รายละเอียดของคุณสมบัติของคลาส Transportation
\begin{tabular}{|l|l|l|l|}
\hline ชื่อคุณสมบัติ & คำอธิบาย & เรนจ์/ประเภท & เงื่อนไข/Cadinality \\
\hline isBetweenTerminal & \begin{tabular}{l} 
เดินทาง \\
ระหว่างท่าใด
\end{tabular} & TerminalInfrastructure & isBetweenTerminal exactly 2 \\
\hline Duration & \begin{tabular}{l} 
ช่วการ \\
เดินทาง
\end{tabular} & duration & \\
\hline
\end{tabular}

\section*{ภาษา SPARQL}

ภาคผนวก ช นี้ประกอบด้วยการอธิบาขความสำคัมูเกะหน้ที่ของภาษที่ใช้ในกรรคิวรี RDF ที่ใช้ในวิทขานิพนธ์กบับนี้

การคิวรีขของภาษา SPARQL มือยู่ 4 รูปแบบด้วงกันคือ SELECT, CONSTRUCT, ASK และ DESCRIBE ซึ่งแต่ละประกภมืหน้ที่ต่างกันดังนี้

คำัั่ง SELECT ใช้เืื่อต้องการหาค่าใดๆ SELECT มืหน้าที่ทำการคืนค่าทั้งหมด
 SELECT ของ SQL ที่คิวรืค่ค่านฐรานข้อููณแแววคืนค่าออกมาในรูปแบบ Table ขมะที่ SELECT ของ


 SELECT ได้ดับการนำมาปประบุด์ใช้ในการทำดัชนีของข้อมูก

PREFIX p2: <http://www.owl-ontologies.com/HHOntoTourism11.owl\#>

\section*{SELECT ?Road?Soiname}

WHERE \{?Road p2:name 'Petkasem Road'.

?name p2:isLocalityOf ?Road ;
p2:name ?Soiname. \}
ORDER BY DESC(?name) LIMIT 20


ภาพที่ 188 ผลลัพธ์จากการรัน SPARQL ด้วยแอพพลิเคชันของงานวิจัย

คำสั่ง \(\operatorname{ASK}\) คืนค่ากลับมาเป็นบูลีนไม่ว่ารูปแบบคิวรีนั้นจะแมทช์กันหรือไม่ เหมาะกับ ประโยคคำถามที่ต้องการคำตอบว่า Yes หรือ No ตัวอย่างการใช้งานในงานวิจัยนี้คือ การถามว่ามี สถานที่ชื่อนี้ในขอบเขตอำเภอหัวหินหรือไม่ ซึ่งคำตอบที่ได้รับคือ true หรือ fault ตังภาพจากระบบ

PREFIX p2: <http://www.owl-ontologies.com/HHOntoTourism11.owl\#> ASK WHERE \{
?name p2:name 'Tumbon Hua Hin'.
\}

ย์อนกส้บ สัดไป

\section*{SPARQL Query Results}

Boolean Result:

\section*{alue true}

ภาพที่ 189 ผลลัพธ์จากคำถาม ASK

คำสั่ง CONSTRUCT มีหน้าที่ตึ่งค่าสับเซตของคิวรี แล้วคืนค่าออกมาเป็นกราฟที่เป็น รูปของเซตของทริพเพิล เหมาะสำหรับการนำมาประยุกต์ใช้เพื่อแปลงรูปแบบของ RDF และการ อนุมานอย่างง่ายด้วย แต่ยังคงมีข้อจำกัดเรื่องการใช้รูปประโยคของทริพเพิล

คำสั่ง DESCRIBE มีหน้าที่คืนค่าออกมาเป็นกราฟเช่นกันโดยถามว่าของสึ่งที่ดู คล้ายกันมีความเกี่ยวข้องกันหรือไม่ เหมาะสมกับการนำมาประยุกต์สร้างโปรโตไทป์

สำหรับผู้ที่คุ้นเคยกับการทำ XML Validation ในเชิงโครงสร้างด้วย XSLT แล้วภาษา SPARQL สามารถทำหน้าที่ RDF Validation ได้ด้วย ยกตัวอย่างการ Validation ด้วยคำสั่ง ASK ใน รูปแบบดังนี้
"ASK WHERE \{ รูปแบบทริพเพิลที่ไม่ต้องการหา \}"
ส่วนการ Validation ค้วย CONSTRUCT มักใช้ในรูปแบบ
"CONSTRUCT \{ จำนวนข้อความหรือข้อมูลที่ผิดพลาด \} WHERE \{รูปแบบทริพเพิล ที่ไม่ต้องการหา\}"

ผลการทดสอบความเชื่อมันแบบสอบถาม

\section*{ผลการทดสอบความเชื่อมั่นแบบสอบถาม}

ผลการทดสอบความเชื่อมั่น (Reliability) ของเครื่องมือ (Pre-test) กับกลุ่มตัวอย่างจำนวน 30 ตัวอย่าง
****** Method 2 (covariance matrix) will be used for this analysis ****** -

RELIABILITY ANALYSIS - SCALE (ALPHA)
Mean Std Dev Cases
\begin{tabular}{|c|c|c|c|c|}
\hline 1. & V07 & 4.5357 & . 6866 & 56.0 \\
\hline 2. & V08 & 3.9821 & . 8840 & 56.0 \\
\hline 3. & V09 & 3.8929 & . 8018 & 56.0 \\
\hline 4. & V10 & 4.0000 & . 7628 & 56.0 \\
\hline 5. & V14 & 4.3750 & . 6198 & 56.0 \\
\hline 6. & V15 & 3.8214 & . 7887 & 56.0 \\
\hline 7. & V16 & 3.7500 & , 7198 & 56.0 \\
\hline 8. & V17 & 4.0357 & . 8082 & 56.0 \\
\hline 9. & V18 & 4.2500 & . 7198 & 56.0 \\
\hline 10. & V19 & 3.6964 & . 6854 & 56.0 \\
\hline 11. & V20 & 4.1429 & . 8405 & 56.0 \\
\hline 12. & V21 & 3.8214 & . 7653 & 56.0 \\
\hline 13. & V22 & 3.5893 & . 7330 & 56.0 \\
\hline 14. & V23 & 3.5179 & . 7133 & 56.0 \\
\hline 15. & V24 & 3.6071 & . 7551 & 56.0 \\
\hline 16. & V25 & 3.5893 & . 7330 & 56.0 \\
\hline 17. & V26 & 4.1071 & . 7053 & 56.0 \\
\hline 18. & V27 & 3.8393 & . 7078 & 56.0 \\
\hline 19. & V28 & 4.3571 & . 7243 & 56.0 \\
\hline 20. & V29 & 3.6786 & . 7412 & 56.0 \\
\hline 21. & V30 & 3.5000 & . 6876 & 56.0 \\
\hline 22. & V31 & 3.4643 & . 6866 & 56.0 \\
\hline 23. & V32 & 3.6964 & . 7366 & 56.0 \\
\hline 24. & V33 & 4.2500 & . 6941 & 56.0 \\
\hline 25. & V34 & 3.5179 & . 7626 & 56.0 \\
\hline 26. & V35 & 3.3929 & . 7551 & 56.0 \\
\hline 27. & V36 & 4.4464 & . 6854 & 56.0 \\
\hline 28. & V37 & 4.3393 & . 6113 & 56.0 \\
\hline 29. & V38 & 3.7321 & . 7259 & 56.0 \\
\hline
\end{tabular}


RELIABILITY ANALYSIS - SCALE (ALPHA)
Correlation Matrix
\(\begin{array}{lllll}\text { V15 } & \text { V16 } & \text { V17 } & \text { V18 } & \text { V19 }\end{array}\)
\begin{tabular}{lccccc} 
V15 & 1.0000 & & & & \\
V16 & .8166 & 1.0000 & & & \\
V17 & .4095 & .4844 & 1.0000 & & \\
V18 & .2402 & .2982 & .3906 & 1.0000 & \\
V19 & .3015 & .2856 & .2825 & .1566 & 1.0000 \\
V20 & .0118 & .2103 & .2600 & .2103 & .2660 \\
V21 & .1872 & .2805 & .3632 & .3135 & .1721 \\
V22 & .2797 & .2843 & .3935 & .3704 & .2178 \\
V23 & .1997 & .1859 & .1566 & .4161 & .4762 \\
V24 & .1243 & .1171 & -.0064 & .1505 & .3977 \\
V25 & .3111 & .3532 & .2400 & .3360 & .3625 \\
V26 & .2638 & .4119 & .3121 & .2328 & .2942
\end{tabular}
\begin{tabular}{llllll} 
V27 & .2082 & .2409 & .2327 & .1517 & .1599 \\
V28 & .0500 & .0697 & .3816 & .1395 & .1125 \\
V29 & .4288 & .4941 & .2623 & .1534 & .3413 \\
V30 & .4694 & .4776 & .3272 & .1102 & .4823 \\
V31 & .5252 & .4966 & .2972 & .1288 & .5367 \\
V32 & .3744 & .3000 & .2629 & .4201 & .3543 \\
V33 & .0830 & .2001 & -.0486 & .0910 & .1242 \\
V34 & .2472 & .3064 & .2349 & .2898 & .2715 \\
V35 & .2421 & .3178 & .3639 & .3178 & .2698 \\
V36 & -.0180 & .0829 & .2004 & .1750 & .0615 \\
V37 & .1657 & .1963 & .2326 & .2996 & .2937 \\
V38 & .2643 & .2871 & .3575 & .2697 & .1990 \\
& & & & & \\
& V20 & V21 & V22 & V23 & V24
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline V20 & 1.0000 & & & & \\
\hline V21 & . 3513 & 1.0000 & & & \\
\hline V22 & . 2740 & . 7419 & 1.0000 & & \\
\hline V23 & . 3596 & . 3723 & . 5881 & 1.0000 & \\
\hline V24 & . 4052 & . 0966 & . 2945 & . 5872 & 1.0000 \\
\hline V25 & . 3625 & . 5151 & . 4248 & . 4142 & . 2616 \\
\hline V26 & . 4644 & . 4403 & . 2977 & . 3214 & . 1146 \\
\hline V27 & . 0393 & . 4831 & . 5012 & . 4199 & . 0838 \\
\hline V28 & . 4522 & . 3139 & . 4183 & . 3393 & . 2612 \\
\hline V29 & - 3669 & . 0572 & . 1876 & . 2174 & . 3550 \\
\hline V30 & ) 1888 & . 2073 & . 2706 & . 2410 & . 2101 \\
\hline V31 & - \(\triangle .1980\) & . 1952 & . 2413 & . 2426 & . 3231 \\
\hline V32 & . 1888 & . 3214 & . 3710 & . 4085 & . 2720 \\
\hline V33 & . 4051 & . 3251 & . 2412 & . 2846 & . 2949 \\
\hline V34 & . 1661 & . 2236 & . 2573 & . 3671 & . 1703 \\
\hline V35 & . 2824 & . 2495 & . 3954 & . 4256 & . 2756 \\
\hline V36 & . 3922 & . 2587 & . 2992 & . 2251 & . 0991 \\
\hline V37 & . 5055 & . 3262 & . 3978 & . 3820 & . 2152 \\
\hline
\end{tabular}

RELIABILITY ANALYSIS - SCALE (ALPHA)
Correlation Matrix
\begin{tabular}{|c|c|c|c|c|c|}
\hline & V20 & V21 & V22 & V23 & V24 \\
\hline \multirow[t]{2}{*}{V38} & . 3916 & . 4032 & . 4729 & . 3430 & . 2026 \\
\hline & V25 & V26 & V27 & V28 & V29 \\
\hline V25 & 1.0000 & & & & \\
\hline V26 & . 5439 & 1.0000 & & & \\
\hline V27 & . 3611 & . 5086 & 1.0000 & & \\
\hline V28 & . 0758 & . 2441 & . 2558 & 1.0000 & \\
\hline V29 & . 1876 & . 2062 & . 1077 & . 3193 & 1.0000 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{RELIABILITY ANALYSIS - SCALE (ALPHA)} \\
\hline \multicolumn{7}{|l|}{N of Cases \(=56.0\)} \\
\hline \multirow[b]{2}{*}{Statistics for Scale} & \multicolumn{6}{|c|}{N of} \\
\hline & 112.9286 & 125.885711 .2 & 2199 & 29 & & \\
\hline \multirow[t]{2}{*}{Item Means} & Mean & Minimum M & Maximum & \multirow[t]{2}{*}{Range
1.3368} & \multirow[t]{2}{*}{\[
\begin{array}{r}
\text { Max/Min } \\
.1103
\end{array}
\]} & \multirow[t]{2}{*}{Variance} \\
\hline & 3.8941 & 3.39294 .5357 & 71.1429 & & & \\
\hline \multirow[t]{2}{*}{Item Variance} & s Mean & n Minimum M & Maximum & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Range } \\
2.0912
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Max/Min } \\
& .0074
\end{aligned}
\]} & \multirow[t]{2}{*}{Variance} \\
\hline & . 5397 & . 3737.7815 & . 4078 & & & \\
\hline \multicolumn{7}{|l|}{Inter-item} \\
\hline \multirow[t]{2}{*}{Covariances} & Mean & Minimum M & Maximum & \multirow[t]{2}{*}{Range
\[
-1.9833
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Max/Min } \\
.0076
\end{gathered}
\]} & \multirow[t]{2}{*}{Variance} \\
\hline & . 1358 & -. 2338.4636 & . 6974 & & & \\
\hline
\end{tabular}
\begin{tabular}{lcccccc}
\multicolumn{6}{c}{ Analysis of Variance } & \\
Source of Variation & Sum of Sq. & DF & Mean Square & \(F\) & Prob. \\
& & & & & & \\
Between People & 238.7488 & 55 & 4.3409 & & \\
Within People & 795.0345 & 1568 & .5070 & & \\
Between Measures & \multicolumn{2}{l}{172.9261} & 28 & 6.1759 & 15.2882 & .0000 \\
Residual & 622.1084 & 1540 & .4040 & & \\
Total & 1033.7833 & 1623 & .6370 & & \\
\(\quad\) Grand Mean & 3.8941 & & & &
\end{tabular}

Reliability Coefficients 29 items
Alpha \(=.9069 \quad\) Standardized item alpha \(=.9086\)

\section*{ประวัติผู้วิจัย}
\begin{tabular}{ll} 
ชื่อ-สกุล & นางสาวชิดชนก โชคสุชาติ \\
ที่อยู่ & \(20 / 3\) ถ.เพชรเกษม อ.หัวหิน จ.ประจวบคีรัขันธ์ 77110
\end{tabular}

\section*{ประวัติการศึกษา}

พ.ศ. 2547 สำเร็จการศึกษาปริญญาวิทยาศาสตรบัณฑิต สาขาวิทยาการคอมพิวเตอร์
พ.ศ. 2549 ศึกษาต่อระดับปริญญามหาบัณฑิต สาขาวิชาเทคโนโลยีสารสนเทศ บัณฑิต วิทยาลัย มหาวิทยาลัยศิลปากร

\section*{ประวัติการทำงาน}

\section*{พ.ศ.2547-2550 บริษัท โดล ไทยแลนด์ จำกัด}

\begin{tabular}{ll} 
พ.ศ. 2553 & Chidchanok Choksuchat, and Chantana Chantrapornchai, "Benchmarking \\
& Query Complexity between RDB and OWL." in Future Generation \\
& Information Technology, vol. 6485, Lecture Notes in Computer Science: \\
พ.ศ. 2553 & Springer Berlin / Heidelberg, 2010:352-364. \\
& Chidchanok Choksuchat, and Chantana Phongpensri, "Automatic Information \\
& Extraction for Pre-Processing the Semantic Web: a Case Study on Hua Hin \\
& Tourism." in The 25th ITC-CSCC 2010 special session on text mining. \\
พ.ศ.2552 Chidchanok Choksuchat, and Chantana Phongpensri, "Comparative \\
& Complexity Query between Relational Database and Ontology about Hua-Hin \\
& Tourism Web." in Thai Track Session. The 13th Pacific-Asia Conference on \\
& Knowledge Discovery and Data Mining (PAKDD-09).
\end{tabular}```

